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Abstract.

New probabilistic model of population dynamics is analyzed. Conditions of
invariance and conditions of asymptotic extinction with probability one for
population were determined. Results of analysis are illustrated by an example
of bisexual population dynamics.
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Introduction

This publication is a continuation of our previous publications (Rodina 2013, 2014)
which are devoted to new stochastic model of population dynamics. Considering model is
generalization of models described in publications by L.V. Nedorezov (1997) and L.V. Ne-
dorezov and Yu.V. Utyupin (2003, 2011), and based on the theory of differential equations
with random coefficients and differential equations with impulses.

Within the framework of deterministic mathematical models of isolated population dy-
namics it is assumed that the death of individuals has continuous character, and appearance
of individuals of new generations takes place in some fixed time moments τk. For considering
model we assume that population development on time intervals (τk, τk+1), as well as the
moments τk are depend on various changes of an environment, and therefore dynamics of
population are described by system with random coefficients.

Let’s designate through M(σ) the set which limits the size of population and depends
on random parameter σ. For considering hypotetical population we investigate conditions
of invariance and weakly invariance of set M(σ) concerning control system. Set M(σ) is
called invariant if for any initial point (t0, x0) ∈ M(σ) each solution ϕ(t, σ, x0) of system
with initial condition ϕ(t0, σ, x0) = x0 satisfies to inclusion (t, ϕ(t, σ, x0)) ∈ M(σ) for all
t > t0. If M(σ) does not possess the property of invariance, but there is an admissible con-

43



Population Dynamics: Analysis, Modelling, Forecast 3(2): 43-54

trol under which the solution ϕ(t, σ, x0) all time is limited by this set, then the set M(σ) is
called weakly invariant. For various probabilistic models a situation is often observed when
property of invariance is satisfied not for all, but for almost all values of parameter σ. In
such conditions we say that the set M(σ) is invariant with probability one.

Let’s notice, that for various problems the set M(σ) can limit the size of population
from above or from below or may have more difficult structure. For example, if we investigate
the population of close-living species of forest insects then it is expedient to consider the set
limiting the size of population from above and to choose such controls which are capable to
prevent mass flashes of quantity of insects. Now let’s consider the population which is subject
to a craft, when the moments of trade preparations and the sizes of these preparations are
random variables. The following problem is of interest for such model: to find conditions of
existence of control directed on increase of the population and its preservation at certain
level. Thus, for given population we will choose set M(σ), limiting its size from below.

We determined also conditions of asymptotical extinction and conditions for con-
trol leading population to extinction. Results of current publication can find application in
practical problems conserning control influences which are directed on increase of population
(preservation of rare types of animals, increase of the size of exploited population), or on its
reduction (control of the number of harmful insects, epidemiology problems etc.).

Deterministic and stochastic discrete-continuous models of population dy-

namics

In various models of population dynamics (for example, models with phase structure,
age structure, gender structure, models describing dynamics of individuals of different types
and various age classes) it is assumed that transition from one type or class of individuals
into another one has "jump character", and it is carried out in fixed time moments τk.

These models with continuous-discrete behavior of trajectories are described by systems
of differential equations with impulses (examples can be found in following publications:
Nedorezov, 1997; Nedorezov, Utyupin, 2003, 2011; Iannelli, Martcheva, Milner, 2005). Let’s
consider a model of population dynamics describing by following control system

ẋ = f(t, x, u), t 6= τk,

∆x
∣∣
t=τk

= g(x,w), (t, x, u, w) ∈ R× Rn × Rm × Rp,
(1)

where τk = kT, k = 1, 2, . . . , Rn is a standard Euclidean n -dimension space with scalar
product 〈x, y〉 and norm |x| =

√
〈x, x〉. Admissible controls u(t) are limited measurable

functions with values in compact set U ⊂ Rm, w is control vector influencing behavior of
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system in time moments τk and accepting values in compact set W ⊂ Rp. We assume that
functions f(t, x, u) and g(x,w) are continuous on set of variables and solutions of system
(1) are continuous at the left. We will also use the next designations: %(x,M)

.
= inf

y∈M
|x− y|

is a distance from a point x ∈ Rn to the set M in Rn, frM is a border, intM is an interior
of the set M.

The full description of stochastic discrete-continuous model one can find in our pub-
lications (Rodina 2013, 2014). Here we will result its short description as it is necessary for
the further statements. It is natural to suppose that population size changing on intervals
(τk, τk+1), as well as moments τk , are determined by various natural conditions. Therefore we
have to assume that on each time interval (τk, τk+1) function f depends on random param-
eter ψk, accepting value in the set Ψ, and lengths of intervals θk = τk − τk−1, k = 2, 3, . . .

between the moments of appearance of new generations are random variables with distribu-
tion function G(t). We assume that this distribution is concentrated on a segment [α, β],

where 0 < α < β <∞. In that specific case when all variables ψk, θk are constants, stochas-
tic model coincides with deterministic one, therefore it is a generalization of deterministic
model.

Let’s assume that dynamics of population is given by control system

ẋ = f(htσ, x, u), t 6= τk(σ),

∆x
∣∣
t=τk(σ)

= g(x,w), (t, σ, x, u, w) ∈ R× Σ× Rn × Rm × Rp,
(2)

that generated by metric dynamical system (Σ,A, µ, ht). We assume that function (x,w) →
g(x,w) and function (t, x, u) → f(htσ, x, u) for every fixed σ ∈ Σ is continuous on set
of variables and controls u and w accept values in compact sets U ⊂ Rm and W ⊂ Rp

accordingly.
Let’s remind that probability space (Σ,A, µ) is direct product of probability spaces

(Σ1,A1, µ1) and (Σ2,A2, µ2). Here Σ1 is the set of numerical sequences θ = (θ1, . . . , θk, . . . ),

where θk ∈ [α, β], system of sets A1 is the least sigma-algebra generated by cylindrical sets

Ek
.
= {θ ∈ Σ1 : θ1 ∈ I1, . . . , θk ∈ Ik},

where Ii
.
= (ti, si], and the probabilistic measure µ1 is defined as follows. For each interval

Ii, i > 2, we define a probability measure µ̃1(Ii) = G(si)− G(ti) by means of distribution
function G(t), on algebra of cylindrical sets we construct a measure

µ̃1(Ek) = µ̃1(I1)µ̃1(I2) . . . µ̃1(Ik),

45



Population Dynamics: Analysis, Modelling, Forecast 3(2): 43-54

then owing to theorem of А.Н Kolmogorov (Shiryaev, p.176, 1989) on measurable space
(Σ1,A1) there is a unique probabilistic measure µ1, which is continuation of µ̃1 on sigma-
algebra A1.

Further, let are fixed set Ψ and the sigma-algebra of its subsets A0, where proba-
bilistic measure µ̃2 is defined. Let’s designate through Σ2 the set of sequences

Σ2
.
= {ϕ : ϕ = (ψ0, ψ1, . . . , ψk, . . . ), ψk ∈ Ψ}.

We define a measure µ̃2

(
ϕ ∈ Σ2 : ψ1 ∈ Ψ1, . . . , ψk ∈ Ψk

)
= µ̃2(Ψ1)µ̃2(Ψ2) . . . µ̃2(Ψk),

where Ψi ∈ A0 and a measure µ2 as measure continuation of µ̃2 on sigma-algebra A2.

On probability space (Σ,A, µ) we define the shift transformation htσ that keeps a measure
µ = µ1 × µ2 which is direct product of probability measures µ1 and µ2. It means, that
µ1 × µ2(A×B) = µ1(A)µ2(B) for all sets A ∈ A1, B ∈ A2.

The basic definitions

Let’s consider stochastic system (2) which describes population dynamics with phase
or age structure. We will demand that solutions of system (2) are non-negative at non-
negative initial conditions. This requirement is satisfied for system ẋ = f(htσ, x, u) if and
only if the function f satisfies to a condition of quasi-positive (Kuzenkov, Ryabova, 2007).
Let’s formulate a similar condition for system with impulse (2). We designate

Rn
+
.
= {x ∈ Rn : x1 > 0, . . . , xn > 0}.

Definition 1. We say, that functions f(htσ, x, u) and g(x,w) satisfy to a condition
of quasi-positive, if for any (t, σ, x) ∈ R+ × Σ × Rn

+ and any admissible controls take place
following inequalities:

fi(h
tσ, x1, . . . , xi−1, 0, xi+1, . . . , xn, u1, . . . , um) > 0, i = 1, . . . , n, (3)

xi + gi(x1, . . . , xn, w1, . . . , wp) > 0, i = 1, . . . , n. (4)

Let x(t, σ, x0) is the solution of system ẋ = f(htσ, x, u), satisfying to the initial
condition x(0, σ, x0) = x0. If the inequality (3) is true and x0 ∈ Rn

+, then x(t, σ, x0) ∈ Rn
+

for all t > 0 (Kuzenkov, Ryabova, p. 34, 2007). From the inequality (4) it follows that
solutions of system with impulse (2) are non-negative.

Following А. F. Filippov, we will put in conformity to system (2) differential inclusion

ẋ ∈ F (htσ, x), F (σ, x) = co F̃ (σ, x), (5)
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where for each fixed point (σ, x) ∈ Σ × Rn set F̃ (σ, x) consists of all limiting values of
function (t, x) → f

(
htσ, x, U

)
as (ti, xi) → (0, x). We assume, that at fixed (σ, x) the

set F (σ, x) is convex and compact and for every σ ∈ Σ function (t, x) → F (htσ, x) is
upper semi-continuous. Then for any σ ∈ Σ there is a local solution of Cauchy problem
ẋ ∈ F (htσ, x), x(0) = x0 (Blagodatskikh, Filippov, 1985).

Let’s designate Ω
.
= Σ × comp(Rn), where comp(Rn) is the space of nonempty

compact subsets of Euclidean space Rn. To each set X ∈ comp(Rn) and to time moment
t > 0 we will put in correspondence the set D(t, ω), where ω = (σ,X), consisting of
all values in the moment t of solutions t → ϕ(t, σ, x) of inclusion (5), when the initial
condition ϕ(0, σ, x) = x runs all set X. The set D(t, ω) is called a set of attainability of
control system (2). We assume, that for given set X ∈ comp(Rn) the set D(t, ω) exists at all
t > 0; it means, that for every x ∈ X there is a solution ϕ(t, σ, x) of differential inclusion
(5), satisfying to initial condition ϕ(0, σ, x) = x and continued on R+ = [0,∞).

For every σ ∈ Σ we consider a continuous mapping t→M(htσ) with values in space
comp(Rn) and set M(σ) = {(t, x) : t > 0, x ∈ M(htσ)}. Let positive number r is fixed.
We designate through Or(x0) = {x ∈ Rn : |x − x0| 6 r} closed sphere of radius r with
the centre in a point x0 ∈ Rn, through M r(σ) = M(σ) +Or(0) closed r -neighbourhood of
M(σ) in Rn, through N r(σ) = M r(σ) \M(σ) external r -neighbourhood of boundary of
M(σ), also we will construct the set Nr(σ) = {(t, x) : t > 0, x ∈ N r(htσ)}.

Definition 2 (Panasenko, Tonkov, 2009). Scalar function x → V (σ, x) is called
Lyapunov’s function (concerning the set M(σ)) if function (t, x) → V (htσ, x) satisfies to
local Lipschitz condition and to following conditions:

1) V (htσ, x) = 0 for all (t, x) ∈ M(σ);

2) V (htσ, x) > 0 for some r > 0 and all (t, x) ∈ Nr(σ).

Definition 3. Lyapunov’s function x → V (σ, x) is called definitely positive (on set
Mr(σ)), if for every ε ∈ (0, r) will be such δ > 0, that V (htσ, x) > δ for all

(t, x) 6∈ Mε(σ)
.
= {(t, x) : t > 0, x ∈M ε(htσ)}.

Definition 4. For locally Lipschitz functions V (σ, x) generalized derivative in a point
(σ, x) ∈ Σ × Rn in a vector direction d ∈ Rn (F.Clark’s derivative) is called the following
limit (Clarke, p. 17, 1983):

V o(σ, x; d)
.
= lim sup

(ϑ,y,ε)→(σ,x,+0)

V (hεϑ, y + εd)− V (ϑ, y)

ε
,
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and expressions V o
min(σ, x)

.
= inf

d∈F (σ,x)
V o(σ, x; d), V o

max(σ, x)
.
= sup

d∈F (σ,x)

V o(σ, x; d) are called

lower and upper derivatives of functions V owing to differential inclusion (5).

Conditions of invariance of set concerning control system

In this section we investigate conditions of invariance and weakly invariance of given
set M(σ) concerning control system (2). Let’s consider differential equation with impulse

ż = q(htσ, z), t 6= τk(σ),

∆z
∣∣
t=τk(σ)

= l(z), (t, σ, z) ∈ R× Σ× R,
(6)

that generated by metric dynamical system (Σ,A, µ, ht). We assume that solutions of equa-
tion (6) are continuous at the left; q(σ, 0) ≡ 0 and the equation (6) possess the property of
uniqueness of Cauchy problem. We consider the function L(z)

.
= l(z) + z and assume that

this function is increasing, L(0) = 0 and L(z) > 0 if z > 0.

Definition 5 (Panasenko, Tonkov, 2008, 2009). The set M(σ) is called positively
invariant (concerning system (2)) if for any initial point (t0, x0) ∈ M(σ) each solution
ϕ(t, σ, x0) of system (2) with the initial condition ϕ(t0, σ, x0) = x0 satisfies to inclusion
(t, ϕ(t, σ, x0)) ∈ M(σ) for all t > t0.

Following statement is generalisation of theorem 2 (Panasenko, Tonkov, 2009).

Theorem 1. Let’s assume, that there are functions V (σ, x), q(σ, z) and L(z) such
that V (σ, x) is Lyapunov’s definitely positive function concerning the set M(σ) and for all
(σ, x) ∈ Σ× Rn

+ the next inequalities are true:

V o
max(σ, x) 6 q

(
σ, V (σ, x)

)
, sup

σ∈Σ,w∈W
V

(
σ, x+ g(x,w)

)
6 inf

σ∈Σ
L

(
V (σ, x)

)
. (7)

Then, if trivial solution of equation (6) are stable on Lyapunov (in classical sense ), then
the set M(σ) is positively invariant concerning system (2).

Proof. Let ϕ(t) = ϕ(t, σ, x0) is the solution of control system (2) defined on some
interval [t0, τ) and satisfying to initial condition ϕ(t0, σ, x0) = x0. We will show, that for any
ε ∈ (0, r) will be such δ ∈ (0, ε), that for any t0 ∈ R and any solution ϕ(t) from a condition
(t0, ϕ(t0)) ∈ Mδ(σ) follows that (t, ϕ(t)) ∈ Mε(σ) for all t > 0. If the set M(σ) possesses
given property, it is called uniformly stable on Lyapunov concerning system (2) (Panasenko,
Tonkov, 2009).

We will choose ε ∈ (0, r) and designate

α = α(ε) = inf
(t,x)

{
V (htσ, x) : (t, x) ∈ fr Mε(σ)

}
.
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As Lyapunov’s function V (σ, x) definitely positive, then α > 0. Trivial solution of equation
(6) is stable (in Lyapunov’ sense), therefore for given α it is possible to find such δ0 ∈ (0, α),

that for any solution z(t, σ, z0) of equation (6) from an inequality z0 < δ0 follows that
z(t, σ, z0) < α for any t > t0. Owing to continuity of function x→ V (σ, x) there exists such
δ = δ(δ0) ∈ (0, ε) that V (ht0σ, x) < δ0 for all x ∈ N δ(ht0σ).

Let’s consider function v(t, σ) = V
(
htσ, ϕ(t)

)
, which is owing to Rademacher’s theo-

rem and differentiated at almost all t ∈ [t0, τ). In points of differentiability of function v(t, σ)

the inequality v̇(t, σ) 6 V o
max

(
htσ, ϕ(t)

)
is executed (Panasenko, Tonkov, 2009). Therefore,

from (7) we have for all t ∈ [0, τ) the inequality v̇(t, σ) 6 q(htσ, v(t, σ)), which is true as
ϕ(t) ∈ Rn

+ (last inclusion follows from a condition of quasi-positivity of functions f(htσ, x, u)

and g(x,w) ). We will designate through z(t, σ, z0) the solution of the equation (6), satisfying
to the initial condition z0 = v(t0, σ).

Owing to Chaplygin’s theorem of differential inequalities the inequality v(t, σ) 6 z(t, σ)

is true for all t ∈ [t0,min{τ, τp}), where τp = τp(σ) is least moment of jump of the system
(6), satisfying to condition τp > t0. Further if τ > τp then from second inequality (7) it
follows that for any σ ∈ Σ and w ∈ W the next relations are truthful:

v(τp + 0, σ) = V
(
hτp+0σ, ϕ(τp + 0)

)
= V

(
hτp+0σ, ϕ(τp) + g(ϕ(τp), w)

)
6

6 L
(
V (hτpσ, ϕ(τp))

)
= L(v(τp, σ)).

From the equality

z(τp + 0, σ, z0) = z(τp, σ, z0) + l(z(τp, σ, z0)) = L(z(τp, σ, z0))

we get the inequality v(τp+0, σ) 6 z(τp+0, σ, z0). Continuing similar reasoning, it is possible
to show that the inequality 0 6 v(t, σ) 6 z(t, σ, z0) is true for all t ∈ [t0, τ).

Let’s assume, that there will be time moment t∗, for which (t∗, ϕ(t∗)) ∈ fr Mε(σ).

As z0 = v(t0, σ) = V (ht0σ, x) < δ0, we receive the contradiction:

α 6 v(t∗, σ) 6 z(t∗, σ, z0) < α.

Thus, the solution of system leaving at t = t0 from set M δ(σ), remains in set Mε(σ) for
all t > t0; therefore the given solution is infinitely continued to the right. If the closed set
M(σ) is uniformly stable (in Lyapunov’ sense) concerning system (2), then it is positively
invariant (Panasenko, Tonkov, 2009).

Definition 6 (Panasenko, Tonkov, 2008, 2009). The set M(σ) is called weakly posi-
tively invariant (concerning system (2)) if for any initial point (t0, x0) ∈ M(σ) there exists
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a solution ϕ(t, σ, x0) of systems (2) with initial condition ϕ(t0, σ, x0) = x0 satisfying to
inclusion (t, ϕ(t, σ, x0)) ∈ M(σ) for all t > t0.

Theorem 2. Let’s assume, that there are functions V (σ, x), q(σ, z) and L(z) such
that V (σ, x) is definitely positive Lyapunov’s function concerning set M(σ) and for all
(σ, x) ∈ Σ× Rn

+ are true inequalities

V o
min(σ, x) 6 q

(
σ, V (x)

)
, sup

σ∈Σ
min
w∈W

V
(
σ, x+ g(x,w)

)
6 inf

σ∈Σ
L

(
V (σ, x)

)
.

Then, if the trivial solution of the equation (6) is stable on Lyapunov, then the set M(σ) is
weakly positively invariant concerning system (2).

Proof. Owing to A. F. Filippov’s theorem (Blagodatskikh, Filippov, p. 213, 1985)
and theorem 2 of publication (Rodina, Tonkov, 2009) there is a solution ϕ(t) = ϕ(t, σ, x0)

of control system (2), satisfying to initial condition ϕ(t0, σ, x0) = x0, such that function
v(t, σ) = V

(
htσ, ϕ(t)

)
satisfies to an inequality v̇(t, σ) 6 q(htσ, v(t, σ)). The further proof is

similar to the proof of the theorem 1. �

Asymptotical stability and extinction of population

In the following statement we receive conditions when population size ϕ(t, σ, x),

defined by system (2), approaches to given set M(σ). In that specific case when the set
M(σ) does not depend on parameter σ and looks like M = {(t, x) : t > 0, x = 0}, we
receive conditions of extinction of population.

Theorem 3. Let’s assume, that there are functions V (σ, x), q(σ, z) and L(z) such
that V (σ, x) is Lyapunov’s definitely positive function concerning set M(σ) and inequalities
(7) are satisfied for all (σ, x) ∈ Σ×Rn

+. If lim
t→∞

z(t, σ, z0) = 0, then for any solution ϕ(t, σ, x0)

of system (2), satisfying to initial condition ϕ(t0, σ, x0) = x0 ∈ Rn
+, where V (ht0σ, x0) 6 z0,

takes place equality lim
t→∞

%
(
ϕ(t, σ, x0),M(htσ)

)
= 0.

Proof. Owing to the theorem 1 set M(σ) is positively invariant concerning system (2).

Let ϕ(t) = ϕ(t, σ, x0) is a solution of system (2), beginning in a point (t0, x0) ∈ Mr(σ) and
defined for all t > t0. From the proof of theorem 1 follows that function v(t, σ) = V

(
htσ, ϕ(t)

)
is defined at all t > t0 and satisfies to an inequality of 0 6 v(t, σ) 6 z(t, σ, z0), where
z(t, σ, z0) is the solution of the equation (6) with initial condition z0 > v(t0, σ) = V (ht0σ, x0).

Thus,
lim
t→∞

v(t, σ) = lim
t→∞

V
(
htσ, ϕ(t)

)
= lim

t→∞
z(t, σ, z0) = 0.

We will show that lim
t→∞

%
(
ϕ(t),M(htσ)

)
= 0. Let’s assume, that if it not so, then there is a

constant ε ∈ (0, r) and sequence {ti}∞i=1 such that ti →∞ and %
(
ϕ(ti),M(htiσ)

)
> ε. It
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means, that (ti, ϕ(ti)) 6∈ Mε(σ) and as function V is definitely positive, then it will be
such δ > 0, that V

(
htiσ, ϕ(ti)

)
> δ. We received the contradiction with a condition

lim
t→∞

V
(
htσ, ϕ(t)

)
= 0.

As a corollary of theorem 3 we received conditions of extinction of the population
which dynamics is given by control system (2).

Theorem 4. Let’s assume, that there is Lyapunov’s definitely positive function
V (σ, x) = V (x) concerning set M = {(t, x) : t > 0, x = 0} and functions q(σ, z), L(z)

such that for all (σ, x) ∈ Σ× Rn
+ are true inequalities

V o
max(σ, x) 6 q

(
σ, V (x)

)
, max

w∈W
V

(
x+ g(x,w)

)
6 L

(
V (x)

)
.

Then, if lim
t→∞

z(t, σ, z0) = 0 and V (x0) 6 z0, for any solution ϕ(t, σ, x0) of systems (2) take
place equality lim

t→∞
|ϕ(t, σ, x0)| = 0.

Let’s notice, that if equality lim
t→∞

z(t, σ, z0) = 0 is true not for all, but for almost all
σ ∈ Σ, then lim

t→∞
|ϕ(t, σ, x)| = 0 also for almost all σ ∈ Σ, that is population degenerates

with probability one. Conditions of equality to zero of limit lim
t→∞

z(t, σ, z0) (which are executed
for all σ ∈ Σ or with probability one) are received in work (Rodina, 2014).

In the following statement we received conditions of existence of control, leading
population to extinction (we considered population of harmful insects, viruses or bacteria).

Theorem 5. Let’s assume, that there is Lyapunov’s definitely positive function
V (σ, x) = V (x) concerning set M = {(t, x) : t > 0, x = 0} and functions q(σ, z), L(z)

such that for all (σ, x) ∈ Σ× Rn
+ are true inequalities

V o
min(σ, x) 6 q

(
σ, V (x)

)
, min

w∈W
V

(
x+ g(x,w)

)
6 L

(
V (x)

)
. (8)

Then, if lim
t→∞

z(t, σ, z0) = 0 and V (x0) 6 z0, there exists the solution ϕ(t, σ, x0) of system
(2), satisfying to the initial condition ϕ(t0, σ, x0) = x0 such that lim

t→∞
|ϕ(t, σ, x0)| = 0.

The proof follows from the proof of the previous theorem and results of works (Blago-
datskikh, Filippov, 1985; Panasenko, Tonkov, 2009).

Control of number of bisexual population, leading to its extinction with

probability one

For research of dynamics of isolated population we will use probabilistic discrete-
continuous model which is generalization of deterministic model described in work (Nedore-
zov, Utyupin, 2003). Let x1(t) is a number of male and x2(t) is a number of female indivi-
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duals, that at the time moment t satisfy to following control system:

ẋ1 = −(a1 + u1)x1 − b1x1(x1 + γx2), t 6= τk(σ),

ẋ2 = −(a2 + u2)x2 − b2x2(x1 + γx2), t 6= τk(σ),

∆x1

∣∣
t=τk(σ)

= w1D − x1, ∆x2

∣∣
t=τk(σ)

= w2D − x2,

(9)

where a1, a2 are coefficients of natural death of male and female individuals, b1, b2 are
coefficients of self-regulation. Coefficient γ reflects inadequacy of "contribution"individuals
of various sexes in the self-control process, all factors specified above are positive. Further, u1,

u2 are controls influencing on factors of natural death and satisfying restrictions u1 ∈ [u1
1, u

2
1],

u2 ∈ [u1
2, u

2
2], where u1

1 + a1 > 0, u1
2 + a2 > 0. Variable

D = min{x2(τk), εx1(τk)}

is equal to number of impregnated females at moment τk(σ), where ε is "activity factor"of
males which reflects not only their potential possibilities, but also character of interaction
of individuals of various sexes. In particular, if all individuals strictly break into couples,
ε = 1 . Variables w1, w2 are equal to an average of descendants of male and female sexes
accordingly, generated by one impregnated female; we will consider the case when these sizes
can be control so, that w1 ∈ [w1

1, w
2
1], w2 ∈ [w1

2, w
2
2], where w1

1 > 0, w1
2 > 0. Not reducing

a generality of analysis we put ε = 1.

We assume, that the moments τk depend on various natural conditions, therefore
lengths of intervals between the moments of appearance of new generation θk = τk − τk−1,

k = 2, 3, . . . are independent random variables with distribution G(t), which is concentrated
on a segment [α, β], where 0 < α < β < ∞. In publication (Nedorezov, Utyupin, 2003) it
is noticed that analysis of dynamics of number of bisexual population is important problem
both with theoretical, and from a practical position. For example, there are various control
methods of number of harmful species of insects, focused on creation of some unbalance in
sexual structure of population that promotes decrease in speed of its reproduction and quite
often leads to degeneration.

As Lyapunov’s function we take function V (x1, x2) = x1 + x2. We will find

V o
min(x) = −(a1 + u2

1)x1 − b1x1(x1 + γx2)− (a2 + u2
2)x2 − b2x2(x1 + γx2),

then for all x ∈ R2
+ takes place following inequality V o

min(x) 6 −V (x)
(
aV (x) + b

)
, where

a = min
(
b1, γb2,

γb1 + b2
2

)
> 0, b = min(a1 + u2

1, a2 + u2
2) > 0. Further,

min
w∈W

V (x+ g(x,w)) = min
w1,w2

(w1 + w2)D = (w1
1 + w1

2) min(x1, x2) 6
w1

1 + w1
2

2
V (x).

52



Population Dynamics: Analysis, Modelling, Forecast 3(2): 43-54

Thus, inequalities (8) are true for functions

V (x) = x1 + x2, q(σ, z) = −z(az + b), L(z) = cz, where c =
w1

1 + w1
2

2
.

For given functions we will compile the differential equation

ż = −z(az + b), t 6= τk(σ), ∆z
∣∣
t=τk(σ)

= (c− 1)z, (10)

that parameterized by metric dynamical system (Σ,A, ν, ht). It is simple to consider, that
for c ∈ (0, 1] the size of the population, given by the equation (10) (hence, by system (9)),
asymptotically tends to zero, therefore we will assume further, that c > 1.

Let’s assume that random variables θk, k = 2, 3, . . . have the distribution con-
centrated on a segment [α, β]. On each interval (τk, τk+1) the solution of equation (10) is
function

η(t, zk) =
bzk

azk(eb(t−τk) − 1) + beb(t−τk)
,

where zk = η(τk+) = lim
t→τk+0

η(t). Let’s construct the function

H(t, z) = L(η(t, z)) =
bcz

az(ebt − 1) + bebt

and find solutions of equation H(t, z) = z : z1 = 0, z2 =
b(c− ebt)

a(ebt − 1)
, where z2 > 0 for

t <
ln c

b
. Thus, from results of publication (Rodina, 2014) follows, that if α >

ln c

b
, then for

any σ ∈ Σ and any z0 > 0 is executed equality lim
t→∞

z(t, σ, z0) = 0, where z(t, σ, z0) is a
solution of the equation (10), satisfying to initial condition z(t0, σ, z0) = z0. Owing to the
theorem 5 for any x0 ∈ R2

+ there will be a solution ϕ(t, σ, x0) of system (9), satisfying to
initial condition ϕ(t0, σ, x0) = x0, for which equality lim

t→∞
|ϕ(t, σ, x0)| = 0 is true. It means,

that if α >
ln c

b
, then exists the control, resulting population (9) to degeneration.

Let’s find conditions of existence a control resulting population (9) to extinction with
probability one. For this purpose we will use the statement of work (Rodina, 2014):

Theorem. Let’s assume that there exists a measurable set I ⊆ [α, β] such that
µ(I) > 1/2, for everyone t ∈ I the equation H(t, z) = z has no positive solutions and is
true the inequality

sup
t∈I,z>0

H(t, z)

z
· sup

t∈[α,β],z>0

H(t, z)

z
< 1.

Then the population, which dynamics is given by the model (10), degenerates with probability
one, that is there is a set Σ0 ⊆ Σ such that µ(Σ0) = 1 and lim

t→∞
z(t, σ, z0) = 0 for all σ ∈ Σ0

and any z0 > 0.
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Let I = [α0, β0] ⊆ [α, β]. It is simple to receive, that the theorem statement is true,

if α0 >
ln c

b
, α+ α0 > 2

ln c

b
and µ(I) > 1/2.
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