
Population Dynamics: Analysis, Modelling, Forecast 3(1): 1-15

About one stochastic model of population dynamics

L.I. Rodina

Udmurt State University, Universitetskaya 1, Izhevsk 426034, Russia
e-mail: box0589@udmnet.ru

Abstract

In current publication a new probabilistic model of population dynamics is ana-
lyzed. Conditions of asymptotic degeneration with probability one for the po-
pulation which development is given by system with random coefficients, are
determined. Dynamic regime of population dynamics which is on the verge of
disappearance is investigated; this regime is characterized by the following pro-
perty: if population size is less than minimal critical level after that restoration
of population becomes impossible with probability one. Results of analysis are
illustrated by examples with various biological populations.
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Introduction

It is considered, that mathematical models of biological population development can
be conditionally divided on deterministic (mechanistic) and stochastic. In most cases determi-
nistic models are simpler than stochastic models but they don’t allow getting an information
about correspondence of theoretical curve to observed datasets which are under the influence
of various random external factors. Well-known stochastic models of population dynamics
are based on branching processes, birth and death processes, and the stochastic differential
equations (Kostitzin, 1937; Harris, 1966; Bharucha-Reid, 1969; Sevastyanov, 1971; Poulsen,
1979; Aagard-Hansen, Yeo, 1984; Nagaev, Nedorezov, Wachtel, 1999; Pertsev, Loginov, 2011;
Vatutin, 2012 and many others).

Considering in current publication a new stochastic model is generalization of models
described in works (Nedorezov, 1997; Nedorezov, Utyupin 2003, 2011), and based on the theo-
ry of differential equations with random coefficients and differential equations with impulses.
Within the framework of deterministic mathematical models of isolated population dyna-
mics it is assumed that the death of individuals has continuous character, and appearance of
individuals of new generations takes place in some fixed time moments τk. For considering
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in current paper we assume that population development on time intervals (τk, τk+1), as
well as the moments τk are depend on various changes of an environment, and therefore
dynamics of population is described by system with random coefficients. For considering
situation population dynamic regimes are investigated, and conditions of asymptotical elimi-
nation of population with probability one are determined. Presented results can be applied
for solution of practical problems on changing of population size (preservation of rare types
of animals from the Red book), or on its reduction (control of the number of harmful insects,
epidemiology problems etc.).

According to A.N. Kolmogorov (1972) publication, the deterministic models describe
dynamics of population for a case when its number is great, and at low values these models
are inapplicable. A similar assumption we made for the stochastic model cosidered below.
We assume that population disappears not only in a situation when its size tends to zero
asymptotically. Population degenerates when its size becomes less than minimal critical value
x∗. If population size becomes rather small surviving of population from the biological point
of view is impossible, despite the fact that the solution of the model describing population
changing, after achievement of minimal value can increase. If we talk about population of
animals, we say that they are on the verge of disappearance; and the given type of animals
can disappear if during of some years it will be exposed to successively adverse conditions
(shortage of a forage, destruction by poachers).

Examples of discrete-continuous models of population growth

At first we will consider examples of deterministic models which were studied in
publications (Nedorezov, 1997; Nedorezov, Utyupin, 2003, 2011). Models considered in these
publications will form a basis for construction of stochastic model.

Example 1. The expediency of application of this model is connected by that in
realization of process of birth, appearance of new individuals is observed a synchronism. At
the same time death process has continuous nature, each individual can die at any moment
under the influence of various factors. For the description of population dynamics differential
equations with impulse are required. Trajectories of these equations suffer discontinuity in the
certain moments of time (the moments of appearance of new generations) τk = kT, where
T > 0, k = 1, 2, . . . . Within the limits of model it is possible to suppose, that appearance of
new generation happens instantly in time moments τk, as the time range of its appearance is
much less than time of life of separate individuals. It is supposed that population size changes
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according to the following differential equation:

ż = −zr(z), t 6= τk, ∆z
∣∣
t=τk

= lz,

where ∆z
∣∣
t=τk

= z(τk + 0)− z(τk − 0), l = const > 0 is the coefficient of reproduction, and
it is equal to quantity of new individuals, falling to the one individual survived to moment of
reproduction. Function r(z) is intensity of death rate of individuals; it is differentiated and
satisfied to following conditions which are realized in many models of population dynamics:

r(0) > 0, r′(z) > 0, lim
z→+∞

r(z) = +∞.

In book by of L.V. Nedorezov (1997) it was shown that at performance of given conditions
population size fixed at moments τk changes monotonously, and thus there always exists
unique globally stable stationary state in phase space.

Example 2. There are various models of population dynamics (for example, models
with phase structure, age structure, models describing dynamics of individuals of different
types and various age classes) in which suppose that transition from one type or a class
into another has jump character, and it is carried out in fixed time moments τk. These
models with continuous-discrete behavior of trajectories are described by system of differential
equations with impulses; the same behavior of trajectories will be considered for population
with gender structure (examples of the description of these models can be found in Nedorezov,
1997; Nedorezov, Utyupin, 2003; Iannelli, Martcheva, Milner, 2005). Let’s consider a model
of population dynamics describing by the following control system

ẋ = f(t, x, u), t 6= τk,

∆x
∣∣
t=τk

= g(x,w), (t, x, u, w) ∈ R× Rn × Rm × Rp,
(1)

where τk = kT, k = 1, 2, . . . , Rn is a standard Euclidean n -dimension space with scalar
product 〈x, y〉 and norm |x| =

√
〈x, x〉. Let’s designate through comp(Rn) the space of

nonempty compact subsets of Euclidean space Rn. Admissible controls u(t) are limited
measurable functions with values in set U ∈ comp(Rm), w is control vector influencing
behavior of system in time moments τk and accepting values in set W ∈ comp(Rp). Let’s
also assume that functions f(t, x, u) and g(x,w) are continuous on set of variables.

Let’s associate with system (1) differential inclusion

ẋ ∈ F (t, x), F (t, x) = co F̃ (t, x),

where for each fixed point (t, x) ∈ Rn+1 set F̃ (t, x) consists of all limiting values of function
(t, x) → f

(
t, x, U

)
as (ti, xi) → (t, x), record co F̃ (t, x) means short circuit of a convex co-
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ver of set F̃ (t, x). The solution of system (1) is such piecewise-continuous function x =ϕ(t)

(absolutely continuous on intervals (τk, τk+1) with discontinuity of first type at t = τk ),
which at almost all t satisfies to inclusion ϕ̇(t) ∈ F (t, ϕ(t)) and to a jump condition t = τk,

that is
∆ϕ

∣∣
t=τk

= ϕ(τk + 0)− ϕ(τk − 0) = g(ϕ(τk − 0), w).

Let’s assume, that function ϕ(t) is continuous at the left, and as value of function ϕ(t) in
a point t = τk we will understand ϕ(τk − 0) = lim

t→τk−0
ϕ(t).

Description of stochastic discrete-continuous model of population dynamics

Now we’ll make a modification of model (1) and transform it into stochastic one. It is
natural to suppose that population size changing on intervals (τk, τk+1), as well as moments
τk , are determined by various natural conditions. Therefore we have to assume that on each
time interval (τk, τk+1) function f depends on random parameter ψk, accepting value in
the set Ψ, and lengths of intervals θk = τk − τk−1, k = 2, 3, . . . between the moments
of appearance of new generation are random variables with distribution function G(t). We
assume that this distribution is concentrated on a segment [α, β], where 0 < α < β <∞,

that is G(t) = 0 if t < α and G(t) = 1 if t > β. In that specific case when all variables
ϕk, θk are constants, stochastic model coincides with deterministic one, therefore it is a
generalization of the deterministic model.

Let’s result the description of stochastic model. Let’s assume that dynamics of pop-
ulation size is given by control system

ẋ = f(htσ, x, u), t 6= τk(σ),

∆x
∣∣
t=τk(σ)

= g(x,w), (t, σ, x, u, w) ∈ R× Σ× Rn × Rm × Rp,
(2)

that generated by metric dynamical system (Σ,A, µ, ht). We assume that function (x,w) →
g(x,w) and function (t, x, u) → f(htσ, x, u) for every fixed σ ∈ Σ is continuous on set of
variables and controls u and w accept values in sets U ∈ comp(Rm) and W ∈ comp(Rp)

accordingly.
Let’s remind, that a metric dynamical system is four elements (Σ,A, µ, ht), where Σ

is a phase space of dynamic system; A is some sigma-algebra of subsets of Σ; ht is one-
parametrical group of measurable transformations of phase space Σ in itself (measurability
means that htA ∈ A for every A ∈ A and for any t ∈ R ). Further, µ is a probability
measure, invariant concerning a flow ht, that is µ(htA) = µ(A) for all A ∈ A and any
t ∈ R (Kornfeld, Sinai, 1980).
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Let’s describe metric dynamical system (Σ,A, µ, ht), which parameterized control
system (2), and thus control system turns to the system with random coefficients (the similar
systems are described in Rodina, 2012, 2013). Let’s define probability space (Σ,A, µ) as
direct product of probability spaces (Σ1,A1, µ1) and (Σ2,A2, µ2). Here Σ1 is the set of
numerical sequences θ = (θ1, . . . , θk, . . . ), where θk ∈ (0,∞), system of sets A1 is the least
sigma-algebra generated by cylindrical sets

Ek
.
= {θ ∈ Σ1 : θ1 ∈ I1, . . . , θk ∈ Ik},

where Ii
.
= (ti, si], and the probabilistic measure µ1 is defined as follows. For each interval

Ii, i > 2, we define a probability measure µ̃1(Ii) = G(si)− G(ti) by means of distribution
function G(t), and for I1 by means of distribution function

G1(t) =
1

mθ

∫ t

0

(
1−G(s)

)
ds, t ∈ (0,∞), (3)

where mθ is the mathematical expectation of a random variable with distribution G(t). On
algebra of cylindrical sets we construct a measure

µ̃1(Ek) = µ̃1(I1)µ̃1(I2) . . . µ̃1(Ik),

then owing to theorem of A.N. Kolmogorov (Shiryaev, p.176, 1989) on measurable space
(Σ1,A1) there is a unique probabilistic measure µ1, which is continuation of µ̃1 on sigma-
algebra A1.

Further, let are fixed set Ψ and the sigma-algebra of its subsets A0, on which the
probabilistic measure µ̃2 is defined. Let’s designate through Σ2 the set of sequences

Σ2
.
= {ϕ : ϕ = (ψ0, ψ1, . . . , ψk, . . . ), ψk ∈ Ψ},

through A2 we designate the least sigma-algebra generated by cylindrical sets

Dk
.
= {ϕ ∈ Σ2 : ψ1 ∈ Ψ1, . . . , ψk ∈ Ψk}, where Ψi ∈ A0.

We define a measure µ̃2(Dk) = µ̃2(Ψ1)µ̃2(Ψ2) . . . µ̃2(Ψk) and a measure µ2 as measure
continuation of µ̃2 on sigma-algebra A2.

Let’s enter sequence {τk}∞k=0 as follows: τ0 = 0, τk(θ) =
k∑
i=1

θi, where θ ∈ Σ1. We

will designate through z = z(t, θ) the number of points of sequence {τk}∞k=0, located left
then t, thus z = z(t, θ) = max

{
k : τk 6 t

}
, where t > 0. The variable z(t, θ) is called a

renewal process. As function of distribution of a random variable θ1 is given by equality (3),
z(t, θ) is a stationary renewal process (Korolyuk et al., p. 145 - 147, 1985).
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On probabilistic space (Σ1,A1, µ1) we define the shift transformation

ht1θ =
(
τz+1 − t, θz+2, θz+3, . . .

)
, t > 0.

As z(t, θ) is a stationary renewal process, the transformation ht1 keeps the measure µ1, that
is for any set A ∈ A1 and all t > 0 are satisfied equalities µ1(h

t
1A) = µ1(A). On space

(Σ2,A2, µ2) at everyone fixed θ ∈ Σ1 we define shift transformation

ht2(θ)ϕ = (ψz, ψz+1, . . . ).

From definition of measure µ2 follows, that ht2 keeps given measure. On probabilistic
space (Σ,A, µ) we also define transformation htσ = ht(θ, ϕ) =

(
ht1θ, h

t
2(θ)ϕ

)
. The con-

structed dynamical system (Σ,A, µ, ht) is called the slanting product of dynamical systems
(Σ1,A1, µ1, h

t
1) and (Σ2,A2, µ2, h

t
2(θ)), and transformation htσ keeps a measure µ = µ1×µ2

(Kornfeld, Sinai, p. 190, 1980) which is direct product of probability measures µ1 and µ2.

It means, that µ1 × µ2(A×B) = µ1(A)µ2(B) for all sets A ∈ A1, B ∈ A2.

Conditions of extinction of population. Auxiliary statements.

Results of this section both represent independent interest, and serve for research of
conditions for degeneracy of population which dynamics is given by control system with ran-
dom coefficients. Here is investigated the population that defined by the differential equation
with influence of impulse

ż = q(htσ, z), t 6= τk(σ),

∆z
∣∣
t=τk(σ)

= l(z), (t, σ, z) ∈ R× Σ× R.
(4)

This equation is parameterized by metric dynamical system (Σ,A, µ, ht), which is construct-
ed in previous section. We assume that the solutions of equation (4) are continuous at the left.
To the equation (4) we associate the auxiliary determined equation with impulse influence

ż = q(t, ψ, z), t 6= τk,

∆z
∣∣
t=τk

= l(z), (t, ψ, z) ∈ R×Ψ× R,
(5)

where τk = kT, T ∈ [α, β], 0 < α < β < ∞, k = 1, 2, . . . . Let’s notice, that the
equation (5) can be considered as a special case of the equation with random coefficients
(4) at fixed σ = ((T, ψ), (T, ψ), . . . ) ∈ Σ. We assume that for everyone ψ ∈ Ψ function
(t, z) → q(t, ψ, z) is defined and continuous together with a derivative q′z(t, ψ, z) on set
(0,∞) × (0,∞) and q(t, ψ, 0) = 0. We consider the function L(z)

.
= l(z) + z and assume

that L(z) is differentiated, increasing, L(0) = 0 and L(z) > 0 if z > 0.
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Let ϕ(t, ψ, z) is a solution of equation ż = q(t, ψ, z) at fixed value ψ ∈ Ψ (without
impulse influence), satisfying the initial condition ϕ(0, ψ, z) = z. We enter into consideration
the function

H(t, ψ, z)
.
= L

(
ϕ(t, ψ, z)

)
= l

(
ϕ(t, ψ, z)

)
+ ϕ(t, ψ, z),

which, as it will be shown further, defined for all (t, ψ, z) ∈ [0,∞)×Ψ×[0,∞). At fixed t = T

and ψ ∈ Ψ function z → H(T, ψ, z) defines character of behavior of the population given
by determined equation (5). We designate through zk = z(kT, ψ) the size of population (5)
at the time moment kT in assumption that in the initial moment the size of this population
is equal z(0, ψ) = z0 > 0, then

zk+1 = z
(
(k + 1)T, ψ

)
= H(T, ψ, zk), k = 0, 1, . . . .

Let’s notice, that the equation H(T, ψ, z) = z always has the solution z = 0. It is known,
that if this equation has the unique positive solution z+ and H ′

z(T, ψ, z+) < 1, then number
of population zk (considered in the moments kT ) monotonously tends to z+ as k → ∞.

If the equation H(T, ψ, z) = z has no positive solutions and H ′
z(T, ψ, 0) < 1, then the

sequence {zk}∞k=0 asymptotically tends to zero for any initial size z0 (see, for example,
Nedorezov, 1997, p. 27, 37-38).

In this work it is shown that for probabilistic model (4) there exist more dynamical
regimes of change of population size. For the description of these regimes it is necessary
to investigate properties of function (t, z) → H(t, ψ, z) for fixed ψ ∈ Ψ. We assume that
for every (t, ψ) ∈ (0,∞) × Ψ equation H(t, ψ, z) = z has finite number of solutions and
designate greatest of these solutions through z̃(t, ψ).

Lemma 1. Let ψ ∈ Ψ is fixed. Function H(t, ψ, z) satisfy following properties:
1) if ϕ(t, ψ, z) is continued on a segment [α, β] for all z > 0, then H(t, ψ, z) is

defined and continuous together with its derivative H ′
z(t, ψ, z) for all t > 0, z > 0;

2) H(t, ψ, z) > 0 for all t > 0, z > 0 and H(t, ψ, 0) = 0 for any t > 0;

3) function z → H(t, ψ, z) is increasing for any t ∈ (0,∞).

Proof. As ϕ(t, ψ, 0) ≡ 0 and L(0) = 0, then H(t, ψ, 0) = 0 for any t ∈ [0,∞). Let’s
show that ϕ(t, ψ, z) > 0 for all z > 0. We assume the opposite: let there is a point t∗ such
that ϕ(t∗, ψ, z) = 0, z > 0. Then through a point (t∗, 0) pass two solutions of the equation
ż = q(t, ψ, z) : the initial solution ϕ(t, ψ, z) and the solution identically equal to zero; we
received the contradiction with a condition of uniqueness of the solution. Let’s notice that
L(z) > 0 if z > 0, therefore H(t, ψ, z) > 0 for all t > 0, z > 0.
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The continuity of functions H(t, ψ, z) and H ′
z(t, ψ, z) for all t > 0, z > 0 follows

from differentiability of function L(z) and theorems of differentiability on initial values. From
uniqueness of the solution ϕ(t, ψ, z) also follows that function z → ϕ(t, ψ, z) is increasing.
Really, if exist such z1 < z2, that ϕ(t, ψ, z1) > ϕ(t, ψ, z2), then will be a point t∗ ∈ (0, t] such
that ϕ(t∗, ψ, z1) = ϕ(t∗, ψ, z2); we come to contradiction. Thus, function L(z) is increasing,
then function z → H(t, ψ, z) = L

(
ϕ(t, ψ, z)

)
also increases. �

Let’s notice, that if we can’t write out function H(t, ψ, z) in an explicit form, may be
possible to estimate function q(σ, z) by some function q0(σ, z), then to construct function
H0(t, ψ, z) and use the theorem of differential inequalities.

Conditions of extinction of populations satisfied for all σ ∈ Σ and satisfied

with probability one

Let’s designate through z(t, σ, z0) the size of population which dynamics is given by
the equation (4), through z0 we designate the initial size of population. We also define the
number sequence {sk}∞k=1, where

s0 = z0, sk = h(sk−1), h(z) = sup
t∈[α,β],ψ∈Ψ

H(t, ψ, z), k = 1, 2, . . .

Lemma 2. If the equation h(z) = z has no positive solutions and h′(0) < 1, then
the equality lim

t→∞
z(t, σ, z0) = 0 is true for every σ ∈ Σ and any z0 > 0.

Proof. Let σ = ((θ1, ψ1), (θ2, ψ2), . . . ) be any point of set Σ, θ1 ∈ [0, β], θk ∈ [α, β],

k = 2, 3, . . . . Let’s consider solution z(t, σ, z0) of equation (4) with initial condition z0 > 0.

If z0 = 0 the lemma statement is obvious, we assume therefore that z0 > 0. To the solution
z(t, σ, z0) we associate the sequence {zk(σ)}∞k=1, where

z0(σ) = z0, zk(σ) = z(τk(σ), σ) = H(θk, ψk, zk−1(σ)), k = 1, 2, . . . . (6)

For sequence {sk}∞k=1 under conditions of the lemma we have the equality lim
k→∞

sk = 0

(Nedorezov, 1997, p. 27). It is obvious, that for all σ ∈ Σ the inequality zk(σ) 6 sk is true
for any natural k; besides, owing to a lemma 1 takes place zk(σ) = H(θk, ψk, zk−1(σ)) > 0.

Thus, we have
lim
k→∞

zk(σ) = lim
k→∞

sk = 0.

From continuity of function (t, z) → H(t, ψ, z) and condition H(t, ψ, 0) = 0 follows that
lim
t→∞

z(t, σ, z0) = 0 for every σ ∈ Σ and any z0 > 0. �

In the theorem 1 we receive the conditions of extinction of population with probability
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one in a case, when the equation H(β, ψ, z) = z has no positive solutions for any ψ ∈ Ψ.

About solutions of equation H(α, ψ, z) = z we assume only that for every fixed ψ ∈ Ψ

number of such solutions is finite. Thus the quantity of positive solutions can be optional and
various for different values ψ ∈ Ψ.

Theorem 1. Let’s assume that there exists a measurable set I ⊆ [α, β] such that
µ(I) > 1/2, for everyone t ∈ I, ψ ∈ Ψ the equation H(t, ψ, z) = z has no positive solutions
and is true the inequality

sup
t∈I,ψ∈Ψ,z>0

H(t, ψ, z)

z
· sup
t∈[α,β],ψ∈Ψ,z>0

H(t, ψ, z)

z
< 1. (7)

Then the population, which dynamics is given by model (4), degenerates with probability one,
that is there is a set Σ0 ⊆ Σ such that µ(Σ0) = 1 and lim

t→∞
z(t, σ, z0) = 0 for all σ ∈ Σ0

and any z0 > 0.

Proof. For any σ ∈ Σ we consider the sequence of independent random variables
{ζk(σ)}∞k=1, where ζk(σ) = 1, if θk ∈ [α, β] \ I and ζk(σ) = −1, if θk ∈ I. From the
conditions of the theorem follows that

µ
(
ζk(σ) = −1

)
= µ(I) >

1

2
, µ

(
ζk(σ) = 1

)
= µ

(
[α, β] \ I

)
<

1

2
.

Let’s also consider the sequence {Sk(σ)}∞k=0, where S0(σ) = 0, Sk(σ) = ζ1(σ) + . . .+ ζk(σ),

which is random wandering on integer points of axis; then from an inequality

µ(ζk(σ) = −1) >
1

2

follows that with probability one random wandering leaves in −∞ (Korolyuk et al., p. 154,
1985). It means, that there is a set Σ0 ⊂ Σ such that µ(Σ0) = 1 and lim

k→∞
Sk(σ) = −∞ for

all σ ∈ Σ0.

If the equation h(z) = z has no positive solutions, then owing to the lemma 2
equality lim

t→∞
z(t, σ, z0) = 0 is true for all σ ∈ Σ, z0 > 0. Further we consider a case

when for every t ∈ [α, β] \ I there exist a set Ψ+(t) ⊆ Ψ such that for every ψ ∈ Ψ+(t) the
equation H(t, ψ, z) = z has positive solutions. We remind, that through z̃(t, ψ) we designate
the greatest solution of the equation H(t, ψ, z) = z, then z̃(t, ψ) > 0 for all t ∈ [α, β] \ I,
ψ ∈ Ψ+(t).

Let c = sup
t∈[α,β],ψ∈Ψ,z>0

H(t, ψ, z)

z
, d = sup

t∈I,ψ∈Ψ,z>0

H(t, ψ, z)

z
· sup
t∈[α,β],ψ∈Ψ,z>0

H(t, ψ, z)

z
< 1.

From the conditions of theorem follows that if ψ ∈ Ψ+(t), then

z̃(t, ψ) = H(t, ψ, z̃(t, ψ)) =
H(t, ψ, z̃(t, ψ))

z̃(t, ψ)
· z̃(t, ψ) 6 cz̃(t, ψ),
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therefore c > 1,
c

d
> 1. For each point z0 > 0 and σ ∈ Σ we define the sequence of random

variables {yk(σ)}∞k=1, where y0(σ) = z0, yk(σ) =
( c
d

)ζk(σ)

· yk−1, k = 1, 2, . . . . Then

yk(σ) =
( c
d

)ζ1(σ)+...+ζk(σ)

· z0 =
( c
d

)Sk(σ)

· z0,

hence, if lim
k→∞

Sk(σ) = −∞, then lim
k→∞

yk(σ) = 0.

Let’s consider sequence {zk(σ)}∞k=1, given by equality (6). We will show, that under
conditions of theorem inequalities zk(σ) < yk(σ), k = 1, 2, . . . are true. If θ1 ∈ [α, β] \ I,
then ζ1(σ) = 1; therefore for any ψ1 ∈ Ψ we have

z1(σ) = H
(
θ1, ψ1, z0

)
=
H(θ1, ψ1, z0)

z0

· z0 6 cζ1(σ)z0 <
( c
d

)ζ1(σ)

· z0 = y1(σ).

If θ1 ∈ I, then ζ1(σ) = −1, thus from (7) we received

z1(σ) = H
(
θ1, ψ1, z0

)
=
H(θ1, ψ1, z0)

z0

z0 6

6 sup
t∈I,ψ∈Ψ,z>0

H(t, ψ, z)

z
· z0 =

dz0

c
=

( c
d

)ζ1(σ)

· z0 = y1(σ).

Further, if θ2 ∈ [α, θ∗), then ζ2(σ) = 1, hence,

z2(σ) = H
(
θ2, ψ2, z1(σ)

)
6 cζ2(σ)z1(σ) <

( c
d

)ζ2(σ)

z1(σ) <
( c
d

)ζ2(σ)

y1(σ) = y2(σ).

We can similarly show that z2(σ) < y2(σ), if θ2 ∈ I and also that the inequality

0 < zk(σ) < yk(σ)

is true for all k = 1, 2, . . . . Thus, if σ ∈ Σ0, then for the sequence {zk(σ)}∞k=1 is true the
equality lim

k→∞
zk(σ) = 0, from which follows that lim

t→∞
z(t, σ, z0) = 0 for all σ ∈ Σ0 and any

z0 > 0. �

Example 3. Let "free"(without exploitation) population dynamics is described by
the equation ż = z(1 − z). We assume that at the random moments of time τk some
quantity of biomass is taken off the population. Thus, we consider the exploited population
which dynamics is given by the equation

ż = z(1− z), t 6= τk(σ),

∆z
∣∣
t=τk(σ)

= −cz, (t, z) ∈ R2,
(8)

that parameterized by metric dynamical system (Σ,A, µ, ht), which is constructed above;
c ∈ (0, 1). We suppose that on each time interval (τk, τk+1) function f(z) = z(1− z) does

10
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not depend on random parameter, but lengths of intervals θk = τk − τk−1, k = 2, 3, . . . be-
tween the moments of appearance of new generations are random variables with distribution
function G(t), concentrated on a segment [α, β].

Let’s calculate function H(t, z) =
zet(1− c)

z(et − 1) + 1
and solutions of equation

H(t, z) = z : z1 = 0, z2 =
et(1− c)

et − 1
.

From lemma 2 follows that if β < −ln(1 − c), then the equality lim
t→∞

z(t, σ, z0) = 0 is true
for every σ ∈ Σ and any z0 > 0.

Let’s consider a case, when β > −ln(1−c). We will find a segment I = [α, β0] ⊆ [α, β]

that satisfies the conditions of theorem 1. We notice that

sup
t∈[α,β],z>0

H(t, ψ, z)

z
= eβ(1− c), sup

t∈I,z>0

H(t, ψ, z)

z
= eβ0(1− c).

Therefore, if β0 6 −ln(1 − c), β0 + β < −2ln(1 − c) and µ(I) > 1/2, then from theorem
1 follows that the population (8) degenerates with probability one, that is there exist a set
Σ0 ⊆ Σ such that µ(Σ0) = 1 and lim

t→∞
z(t, σ, z0) = 0 for all σ ∈ Σ0 and any z0 > 0.

In the following theorem we will also receive the conditions of extinction of population,
satisfied with probability one, but unlike previous, here it is impossible to assert that for
almost all σ ∈ Σ the equality lim

t→∞
z(t, σ, z0) = 0 is true. We will notice, that population also

degenerates under weaker conditions, because for this purpose enough that in some moment
of time t∗ the size of population has appeared less than critical value z∗ > 0, at which
further restoration of its number is impossible. Let’s remind that we designate the greatest
of solutions of equation H(t, ψ, z) = z through z̃(t, ψ).

Theorem 2. Let following conditions are satisfied:
1) H ′

z(t, ψ, z̃(t, ψ)) < 1 for every t ∈ [α, β], ψ ∈ Ψ and sup
t∈[α,β],ψ∈Ψ

z̃(t, ψ) <∞;

2) there are sets I∗ ⊆ [α, β] and Ψ∗ ⊆ Ψ such that µ(I∗) > 0, µ(Ψ∗) > 0, equation
g(z)

.
= sup

t∈I∗,ψ∈Ψ∗
H(θ∗, ψ, z) = z has no positive solutions and g′(0) < 1.

Then there is a set Σ0 ⊆ Σ such that µ(Σ0) = 1 and for any z∗ > 0, z0 > 0 and σ ∈ Σ0

there is such t∗ = t∗(z∗, σ, z0), that z(t∗, σ, z0) < z∗.

Proof. Let designate z̄(t) = sup
ψ∈Ψ

z̃(t, ψ). Let’s notice, that z̄(t) = 0 only in that case,

when the equation H(t, ψ, z) = z has no positive solutions for every ψ ∈ Ψ; therefore if
z̄(t) = 0 for all t ∈ [α, β], then owing to a lemma 2 the equality lim

t→∞
z(t, σ, z0) = 0 is true

for all σ ∈ Σ, that is the theorem statement is obviously satisfied. Further we consider a

11
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case when z̄(t) > 0 for some t ∈ [α, β]. We show, that with probability one since
some moment of time τr = τr(σ, z0) for all solutions of the equation (4) the inequality
0 < z(t, σ, z0) 6 sup

t∈[α,β]

z̄(t)
.
= z̄ is satisfied.

Let’s consider events Ak, consisting that (θk, ψk) ∈ I∗ ×Ψ∗, k = 1, 2, . . . . Random
variables θ1, θ2, . . . and ψ1, ψ2, . . . are independent, therefore events Ak are independent
and for k > 2 they have equal probabilities µ(Ak) = µ(I∗)µ(Ψ∗) > 0. Owing to lemma
2 as equation g(z) = z has no positive solutions, therefore if there occur only events Ak,

then the solution z(t, σ, z0) asymptotical tends to zero at any initial condition z0 . If, on the
contrary, events Ak never occur, then the solution z(t, σ, z0) or tends to value z̃(t, ψ) 6 z̄

as t → ∞ (for example, in a case when θk = α, ψk = ψ for all k = 1, 2, . . . ), or reaches
values, smaller then z̄(α).

It is known, that if events Ak are independent and the series
∞∑
k=1

µ(Ak) diverges,

then with probability one will be carried out infinitely many events Ak (Feller, 1985, p. 216).
It means, that at any initial condition z0 > 0 the inequality 0 < z(t, σ, z0) 6 z̄ will be
executed after realization of certain number of events Ak, that is during some moment of
time τr, r > k. We notice, that if the inequality 0 < z(t, σ, z0) 6 z̄ is true for some t = τr,

then it is true for all t = τr+1, τr+2 . . . . Really, if 0 < z(τr, σ, z0) 6 z̄, then

0 < z(τr+1, σ, z0) = H(θr, ψr, z(τr, σ, σ)) 6 H(θr, ψr, z̄) 6 z̄.

Let’s consider the solution z(τk, σ, z0) of (4) for k > r, then 0 < z(τk, σ, z0) 6 z̄. Let
it is fixed z∗ > 0. We designate through s such number, that after consecutive realization
of s events Ak for the solution z(t, σ, z0), satisfying the condition z(τk, σ, z0) 6 z̄, it will
be true an inequality z(τk, σ, z0) < z∗, that is the size of population will appear below
minimal permissible level. Such number s exists, as if there appeared only events Ak, then
the solution z(τk, σ, z0) asymptotical tends to zero. We enter into consideration the next
events:

B1 = Ar+1 ∩ . . . ∩ Ar+s, B2 = Ar+s+1 ∩ . . . ∩ Ar+2s, . . . , r > 1.

Let p = µ(Ak) > 0, k = 2, 3, . . . . From independence of events Ak follows that events Bk

are also independent and µ(Bk) = ps > 0, therefore the series
∞∑
k=1

µ(Bk) diverges and with

probability one will be carried out at least one of events Bk, that is the size of population
will be less minimal value z∗ > 0 in some moment of time t∗ = t∗(z∗, σ). �

Theorem 3. Let following conditions are satisfied:
1) H ′

z(t, ψ, z̃(t, ψ)) < 1 for every t ∈ [α, β], ψ ∈ Ψ and sup
t∈[α,β],ψ∈Ψ

z̃(t, ψ) <∞;

12
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2) there are sets I∗ ⊆ [α, β] and Ψ∗ ⊆ Ψ such that µ(I∗) > 0, µ(Ψ∗) > 0 and for
every t ∈ I∗, ψ ∈ Ψ∗ inequality z̃(t, ψ) < z∗ is true.

Then there is a set Σ0 ⊆ Σ such that µ(Σ0) = 1 and for any σ ∈ Σ0 and z0 > 0 there
is such t∗ = t∗(z∗, σ, z0), that z(t∗, σ, z0) < z∗.

The proof is similar to the proof of theorem 2.
Let’s designate through ẑ(t, ψ) the minimal positive solution of equation H(t, ψ, z)=z

(if such solution does not exist, we will put ẑ(t, ψ) = 0 ). In the following statement we will
receive the conditions at which population does not degenerate, that is all time its size sur-
passes critical value z∗ > 0. The proof is analogous to the proof of lemma 2.

Lemma 3. Let it is fixed z∗ > 0. If inf
t∈[α,β],ψ∈Ψ

ẑ(t, ψ) > z∗, z0 > z∗ and

H ′
z(t, ψ, ẑ(t, ψ)) < 1

for all t ∈ [α, β], ψ ∈ Ψ, then the inequality z(t, σ, z0) > z∗ is true for all t > 0, σ ∈ Σ.

Let’s notice, that in the model given by the equation (4), there are also other
dynamical regimes of development. For example, we consider a case, when the equation
H(t, ψ, z) = z for each pair (t, ψ) ∈ [α, β] × Ψ has exactly one positive solution ẑ(t, ψ)

such that H ′
z(t, ψ, ẑ(t, ψ)) > 1. Then lim

t→∞
z(t, σ, z0) = +∞, if z0 > sup

t∈[α,β],ψ∈Ψ

ẑ(t, ψ) , and

lim
t→∞

z(t, σ, z0) = 0, if z0 6 inf
t∈[α,β],ψ∈Ψ

ẑ(t, ψ). If z0 ∈
(

inf
t∈[α,β],ψ∈Ψ

ẑ(t, ψ), sup
t∈[α,β],ψ∈Ψ

ẑ(t, ψ)
)
,

then the solution z(t, σ, z0) with probability one or leaves to infinity, or tends to zero. The
probability of that z(t, σ, z0) → +∞ and that z(t, σ, z0) → 0 as t → ∞ depends from the
initial size of population z0.

Example 4. Let’s consider the population which dynamics is given by the equation

ż = −z(az + b), t 6= τk(σ),

∆z
∣∣
t=τk(σ)

= (c− 1)z, (t, z) ∈ R2,
(9)

that parameterized by metric dynamical system (Σ,A, µ, ht), which is constructed above.
Here constants a > 0, b > 0, c > 0. It is obvious, that if c ∈ (0, 1], then the size of
population z(t, σ, z0) tends to zero as t→∞. Therefore we assume further that c > 1. We
suppose that on each time interval (τk, τk+1) function f(z) = −z(az + b) does not depend
on random parameter, but lengths of intervals θk = τk − τk−1, k = 2, 3, . . . between the
moments of appearance of new generations are random variables with distribution function
G(t), which is concentrated on a segment [α, β].

13
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Let’s find function H(t, z) =
bcz

az(ebt − 1) + bebt
and solutions of equation H(t, z) = z :

z1 = 0, z2(t) =
b(c− ebt)

a(ebt − 1)
. We notice, that z2(t) > 0 for t <

lnc

b
. From lemma 2 follows

that if a >
lnc

b
, then the equality lim

t→∞
z(t, σ, z0) = 0 is true for every σ ∈ Σ and any z0 > 0.

Let’s consider a case, when α <
lnc

b
. If there exist θ∗ ∈ (α, β) such that θ∗ > 2

lnc

b
−α

and µ([θ∗, β]) >
1

2
, then from theorem 1 follows that the population (9) degenerates with

probability one. If there is θ∗ ∈ (α, β) such that θ∗ >
lnc

b
and µ([θ∗, β]) > 0, then for

population (9) there is a set Σ0 ⊆ Σ such that µ(Σ0) = 1 and for any z∗ > 0, z0 > 0,

σ ∈ Σ0 there is such t∗ = t∗(z∗, σ, z0), that z(t∗, σ, z0) < z∗.

It is simple to show that the inequality z2(θ
∗) < z∗ is true for θ∗ ∈

(1

b
ln
az∗ + bc

az∗ + b
,
lnc

b

)
.

Therefore, owing to the theorem 3, if µ([θ∗, β]) > 0, then there is a set Σ0 ⊆ Σ such
that µ(Σ0) = 1 and for any σ ∈ Σ0 and z0 > 0 there is such t∗ = t∗(z∗, σ, z0), that

z(t∗, σ, z0) < z∗. The solution of inequality inf
t∈[α,β],ψ∈Ψ

ẑ(t, ψ) = z2(β) > z∗ is β >
1

b
ln
az∗ + bc

az∗ + b
,

hence for these β and any α > 0 the inequality z(t, σ, z0) > z∗ is true for all t > 0, σ ∈ Σ.

Conclusion

In this work the stochastic model which is taking into account influence of random
changes of environmental conditions on dynamics of population size, is developed. As it
was shown, considered model contains more dynamic regimes in comparison with known
deterministic models. We investigate different conditions of population extinction and, in
particular, received conditions when population size can stay less than minimal permissible
level, that also leads to its disappearance. Results of analysis can find application to solution
of various problems of population dynamics, epidemiology, etc.
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