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Abstract  

In current publication a stochastic model of individual migrations within the limits of finite 

domain, and process of data collection are considered. It is assumed that for every set of data 

collection population size is constant, local population size is fixed in 100 different points on 

plane, and time interval between two nearest moments of population size measurements is rather 

big. It is also assumed that population size scale isn’t homogeneous, and there exists an interval 

of optimal values of population size: all individuals try to migrate (with biggest probability) to the 

respective part of plane. For artificial datasets hypotheses about correspondence between real 

average of population density and estimations obtained for different sample sizes were checked. 

Hypotheses about correspondence of observed samples to Normal distribution when sample size 

100,...,8,7N , were also checked with Kolmogorov-Smirnov test.  
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Introduction 

Estimations of mathematical model parameters of population dynamics using real time 

series are among of the main directions in creating of forecasts of population size changing in 

time, in finding of optimal methods of population size management etc. In many cases the process 

of model parameters estimation starts with the words “Let’s consider a time series of population 

density (or population size) changing in time…” }{ *
kx , Nk ,...,0 , where 1N  is a sample size. 

This investigation must also start with the following key words: “Let’s consider the following 

mathematical model with unknown parameters which describes the population density changing 

in time”: 

),,( xtF
dt
dx

 .                                                             (1) 
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In equation (1) )(tx  is a population density at time t ;   is a vector of unknown model 

parameters; F  is non-linear function which satisfies to a set of known limits (Brauer, Castillo-

Chavez, 2001; Nedorezov, Utyupin, 2011; McCallum, 2000; Kendall et al., 1999, 2005; Turchin, 

2003 and others). Model (1) may be of other type, for example, it can be a system of recurrence 

equations, but the problem will be the same: for existing time series }{ *
kx  values of model (1) 

parameters   must be determined. It is important to note, that initial value of population density 

)0(0 xx   is unknown parameter too, and it must be determined using existing datasets. Even in 

the case when we have experimental datasets, initial value 0x  is known amount and doesn’t need 

to be determined (Nedorezov, 2011, 2012 a, b).   

It is possible to point out a lot of various approaches to the problem of estimation of 

model parameters (see, for example, Pawitan, 2001; McCallum, 2000; Wood, 2001a, b). Least 

squares method is one of the basic methods and it is widely used in practice (Hudson, 1970; 

Demidenko, 1981; Gubarev, 1985; Nedorezov, Sadykova, 2005, 2008, 2010). The use of least 

squares method assumes that we have to find the global minimum for squared deviations between 

theoretical (model) values (which must be obtained with model (1)) and empirical dataset }{ *
kx . 

For example, we have to find the global minimum for the following functional form: 





N

k
kk xtxxxQ

0

2
0

*
0 )),,((),(  .                                            (2) 

In (2) ),,( 0xtx k   is the respective theoretical value (for global fitting it is a solution of equation 

(1)) which is obtained with equation (1) for concrete values of model parameters   and initial 

value of population density 0x .  

There are some basic requirements which are assumed to be realized for suitable models. 

In particular, deviations between theoretical and empirical values must correspond to Normal 

distribution with zero average (Hudson, 1970; McCallum, 2000; Wood, 2001a, b; Nedorezov, 

2011, 2012 a, b). In this case the natural questions arise: what is the base for the assumption that 

deviations between theoretical and empirical values must have Normal distribution? What is the 

base for the assumption that all deviations have one and the same Normal distribution? But the 

answers are rather obvious: there are no real bases which are determined by the biology of 

investigated object, for both these assumptions.  
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Requirement about the equivalence of arithmetic average to zero is correct and obvious – 

in a set of measurements the systematic errors cannot be observed. It is also obvious that 

distribution of deviations must be a symmetric function with respect to origin, and realization of 

bigger deviation must be observed with smaller probability. From these two obvious requirements 

we can’t conclude that distribution of deviations is Normal. It is important to note that assumption 

about normality of deviations is in contradiction with sense: for example, if we estimate the 

weight of larva in milligrams we cannot have a mistake in several tons with positive probability 

in principle. We cannot also observe a negative value of weight with positive probability. 

In current publication the following important problems are analyzed. First of all, taking 

into account that “real” local population size is known in model, it is possible to estimate the 

probability that “real” population density belongs or doesn’t belong to confidence interval which 

is determined with standard methodology (with the help of Student’s distribution). These 

calculations were provided for different values of “real” population density and different sample 

sizes 100,...,8,7N . It was obtained that for small sample size and small population density 

number of results when “real” population density doesn’t belong to confidence interval can be up 

to 50%. Increase of sample size leads to decreasing of number of cases when “real” population 

density doesn’t belong to confidence interval; in all modeled situations this number wasn’t equal 

to zero.  

The second, for different values of “real” population density and different sample sizes 

100,...,8,7N  analysis of correspondence of artificial samples to Normal distribution was 

provided with Kolmogorov-Smirnov test. It was obtained that for small samples number of cases 

when hypothesis about Normality must be rejected, can be very small. At the same time the 

following situations were observed in the model: increasing of sample size led to increase the 

number of cases when hypothesis about Normality must be rejected (up to 100%). 

Taking also into account that dependence of sample variation on population density may 

have a non-linear and non-monotonic character (Nedorezov, 2012 b, c, 2013), we can conclude 

that even for very simple situations there are no reasons for assumptions about Normality of 

initial samples, no reasons for assumptions about equivalence of sample variations for different 

values of population densities, and probability that real average of population size belongs to 

confidence interval (when limits of interval are obtained with standard method of parametric 

statistics) can be very small.  
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Description of the model  

Let N  be a total population size. We’ll assume that constN   during the time of 

providing of computer experiments (for estimation of population density). And let 2
nmZ  be an 

integer rectangular lattice on the plane 2R : 

}1,1:),{(2 mjnijiZ nm  . 

Additionally we’ll assume that local population size is determined in knots ),( ji  of the 

lattice 2
nmZ . Denote it as )(txij  for 2),( nmZji   at time moment t . For all time moments t , 

...2,1,0t , the following relation is truthful: 

Ntx
n

i

m

j
ij 

 1 1

)( . 

It means that there are no migrations outside the domain 2
nmZ .  

Definition. We’ll call two knots ),( 11 ji , 2
22 ),( nmZji   as neighboring knots if and only if the 

following relation is truthful:  

12121  jjii . 

Within the framework of model it will be assumed that migration processes from the knot 

),( ji  can be observed to neighboring knots only. About the behavior of migrants we’ll assume 

that for all values of local population sizes there is the quota  , 0 const , 1 , of 

individuals which migrate to neighboring knots with equal probabilities (behavior of these 

individuals doesn’t depend on current situations in 2
nmZ ). Let’s also assume that probabilities of 

migration of all other individuals to neighboring knots (the quota of these individuals is equal to 

1 ) depend on a distribution of individuals in neighboring knots of the lattice 2
nmZ . 

We’ll also assume that all knots of the lattice 2
nmZ  are divided with respect to local 

population size on to three qualitatively different types. Denote as 1D  and 2D , 21 DD  , two 

critical levels which determine the optimal interval of population size; respectively, we’ll assume 

that if in knot ),( ji  the population size )(txij  satisfies to the following inequalities 

21 )( DtxD ij   from this knot we can observe stochastic migrants only (total number of 

stochastic migrants is about )(txij ). In this situation the number of non-migrated individuals is 

about )()1( txij .  
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If the following inequality is truthful 1)( Dtxij  , all individuals try to leave this knot (they 

migrate to neighboring knots). In the situation when we have very high local population size, 

2)( Dtxij  , the considering system is out of the optimal zone, and in this situation we’ll also 

assume that individuals try to leave this knot. But for this situation we’ll have one more 

probability – the probability for staying in this knot.  

Denote as jq  weights which correspond to level of attractiveness of knots for migrants, 

0 constq j . We’ll assume that attractiveness of knot where local population size is less than 

1D , is equal to one, 11 q . Attractiveness of knot 2q  where local population size belongs to 

optimal interval, must be bigger than one, 12  constq . We’ll also assume that attractiveness of 

knot 3q  where local population size is bigger than 2D , 2)( Dtxij  , has minimal value, 13 qq   (it 

is possible to point out species and situations when this assumption isn’t truthful, and migrants 

move to domain where population density is extremely high; Isaev et al., 1984, 2001).  

Let )(tqij  be an attractiveness of knot ),( ji  at moment t  (it is obvious, that depending on 

local population size )(txij  this amount )(tqij  will be equal to 1q , 2q  or 3q ). Let’s assume that for 

every individual probability to migrate to one of nearest knots is proportional to attractiveness of 

this knot and inversely to sum of weights of all neighbour knots. Thus, when 1)( Dtxij   and all 

individuals try to escape out this knot, and knot ),( ji  doesn’t belong to the boundary of lattice 
2
nmZ , we’ll assume that probability jip 1  of migration of every individual to knot ),1( ji   is 

defined by the following expression: 

)()()()(
)(

1111

1
1 tqtqtqtq

tq
p

ijijjiji

ji
ji




 

 .                                             (3) 

All other three probabilities are of the same type. For the case 2)( Dtxij   probability for 

individual to stay at the same knot will be defined by the following expression: 

)()()()()(
)(

1111 tqtqtqtqtq
tq

p
ijijjijiij

ij
ij

 
 .                                       (4) 

Note, that migration flow (which is determined by the expressions (3) and (4)) increases 

monotonously with increase of coefficient of attractiveness. In expression (4) 2)( qtqij  . 
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Results of modeling 

For the computer modeling of migration processes it was assumed that total population 

size N  is constant; thus, theoretical population density   was known and equal to nmN / . 

Below we present results of modeling for the quadratic lattice 2
nmZ  with 100 nm . Initial 

population state was modeled in the following manner: every individual with equal probabilities 

could appear in every knot of the lattice. After determination of initial situation the process of 

individual’s migrations was started (with respect to formulas (3)-(4)). During the time T  (number 

of time steps; for providing calculations it was assumed that 1000T ) was run free. It is 

important moment because we have to have on the lattice the situation which is determined by the 

population migration process only, and doesn’t depend on the initial state of population.  

After that the process of data collection was started: in 100 different stochastic points of 

the lattice 2
nmZ  the local population size was fixed (it looks like 100 casts of the frame). After that 

model run free during the next T  time steps; after that we had the same process of data collection 

and so on. This procedure was repeated 100 times for every fixed population size N . Let’s 

consider in details the situation with 101 D , 302 D , 1.0 . For realization of stochastic 

process on the computer it was assumed that weight 11 q  if the local population size is less than 

1D ; weight 102 q  if the local population size belong to optimal zone ],[ 21 DD ; weight 2.03 q  

if local population size is greater than 2D . 

When population density is small (fig. 1a, density is equal to 0.1) real population density 

is out off confidence interval in 49% of all cases (number of measurements is equal to 7). 

Increase of number of measurements leads to decrease of number of errors (fig. 1a) but it may 

have non-monotonic character and can be big (21%) if number of trials is equal to 52. But it looks 

like unrealistic situation in entomological investigations. Increase of population density in 10 

times (fig. 1b) leads to decrease of number of errors – maximum (10%) of errors is observed 

when number of trials is equal to 7. Big number of errors (8%) can be observed for unrealistic big 

number of trials – 34 (fig. 1b). Further increasing of population density (fig. 1c) can lead to 

increase of maximum of errors we may have in estimation of population density: when number of 

trials is equal to 7 number of errors is equal to 34%. About 14% of errors we may have for 35 

trials (fig. 1c). 
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Fig. 1 Dependence of errors (frequencies of cases when real average doesn’t belong to confidence 
interval) on sample size, and standard errors of these frequencies. a – population density is equal 
to 0.1; b - population density is equal to 1.0; c - population density is equal to 6.0. 
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Fig. 2 Dependence of errors (frequencies of cases when real average doesn’t belong to confidence 
interval) on sample size, and standard errors of these frequencies. a – population density is equal 
to 10.0; b - population density is equal to 15.0; c - population density is equal to 20.0. 
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On fig. 2 there are the pictures which show changing of errors on sample size (number of 

trials for the estimation of average of population density) when real population density is big. In 

such situations we have strong influence of existence of optimal zone ],[ 21 DD  on distribution of 

individuals, their behavior, and, respectively on collected results. In first case (fig. 2a) we can see 

rather small variation of frequency of errors (from 3% to 14%); in other situations (fig. 2 b, c) we 

can observe non-monotonic behavior of errors with increase of sample size. In particular (fig. 2c) 

maximum of errors (12%) is observed for sample size 28. 

Thus, obtained results show us that when population size is sufficient small provided 

measurements and standard statistical estimations of averages may correspond to nothing. If 

number of measurement is equal to 7 number of errors – number of cases when real average 

doesn’t belong to confidence interval – is equal to 49%. If number of trials is less then 7 number 

of errors will increase. And the second, well-known idea in statistics that increase of sample size 

must lead to obtaining of better results (in particular, in estimation of average) isn’t truthful for 

considering situations. Number of errors in estimation of averages may have non-linear character 

with respect to number of trials, and can increase with increase of trials (fig. 2).  

In our publications (Nedorezov, 2012 b, c) it was obtained that deviations between “real” 

population density and results of computer experiments may have non-monotonic character with 

respect to (fixed) population density. This complicated behavior can be explained as a result of 

influence of non-homogenous structure of distribution of individuals on a plane and existence of 

optimal zones of individual’s concentration. Within the framework of considering model we 

analyzed also dependence of sample variations on population density. Results of analysis of 

computer experiments are presented on fig. 3.  

For every fixed population density variations were estimated with formulas: 


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In (5) and (6) kx  are the “empirical” values, nmN /  is “real” population density. On the graphics 

of these functions it is possible to point out two critical points where behavior of functions 

changes cordially (fig. 3). First point is near amount 1.7: near this point influence of optimal 

zones becomes rather strong and it leads to bigger heterogeneity in distribution of individuals on 
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the plane. In a result of this influence increasing of functions (5) and (6) is much faster than it can 

be observed before. 

 

 
Fig. 3 Changing of sample variations (5) (blue points) and (6) (red points) at increase of population density.  

 

The second critical point is in between 20 and 20.2 (fig. 3): influence of non-optimal 

zones }{ 2Dx   becomes strong and it leads to decreasing of variations (5) and (6). This non-

monotonic behavior of sample variations was obtained within the limits of very simple 

mathematical model. Taking into account that for natural populations changing of behavior of 

individuals at changing of population density is usually unknown and can be very complicated, 

changing of sample variation can be very difficult. It allows us to conclude that in analysis of 

empirical time series of natural population problem of heteroscedasticity will never be solved. 

The next important question is a question about Normality of initial samples. For testing 

of Normality of samples for different amounts of population density the well-known Kolmogorov 

– Smirnov criteria was used. On figure 4 there are several curves which show the dependence of 

number of cases when we have to reject Null hypothesis about Normality of samples on sample 

size for fixed values of population densities. As we can see on this fig. 4, if population size is 

very small (curve with 1000N ) for sample size 7 Null hypothesis must be rejected in 49% of 
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all cases. Number of these cases increases very fast and when sample size is equal to 12 Null 

hypothesis must be rejected in 100% cases (with 5% significance level).  

 

 
Fig. 4 Changing of number of cases when hypothesis about Normality of sample must be rejected on sample size for 
different values of population density. 
 

 
Fig. 5 Changing of number of cases when hypothesis about Normality of sample must be rejected on sample size for 
different values of population density. 
 

When population size is bigger than 0.1, we can observe the similar behavior of number of 

cases: in all situations there exists critical number of sample size when number of cases is equal 

to 100%. When density is equal to 1.0 this critical value is 47 (fig. 4). The similar situation we 



Population Dynamics: Analysis, Modelling, Forecast 2(2): 73–86 
 

 84 

can observe for bigger values of population density (fig. 5). Critical points for cases when 

185000N  and 205000N  are equal to 38 and 40 respectively. Thus, analysis of simple 

mathematical model allows us concluding that for sufficient big sample sizes and for various 

population densities we have to reject hypothesis about Normality of initial samples we can get 

with method of “casting of the frame” (and also for other closed methods of biological data 

collection). For natural populations which have more complicated mechanisms of interaction 

between individuals, we cannot assume that situation with initial samples will be better.  

 

Conclusion  

Considered stochastic model of the process of data collection looks like well-known 

method of “casting of the frame”. Within the framework of model it was assumed that migration 

processes of individuals depends on the conditions of knots of lattice. Condition of the knot had 

been determined with respect to interval of population size. Knot had a highest weight (for 

attraction of individuals) if population size was in optimal interval. Knot had smaller weight if 

population size was less than for optimal zone. And, finally, knot had smallest weight if 

population size was bigger than for optimal zone.  

Computer experiments with model show that when population size is sufficient small 

standard statistical estimations of averages may correspond to nothing. If number of measurement 

is equal to 7 number of errors – number of cases when real average doesn’t belong to confidence 

interval – is equal to 49% (fig. 1a). It is obvious, if number of trials is less then 7 number of errors 

increases. Computer experiments allow also concluding that well-known idea in statistics that 

increase of sample size must lead to obtaining better results (in particular, in estimation of 

average) isn’t truthful for considered situations. Number of errors in estimation of averages may 

have non-linear character with respect to number of trials, and it can increase with increase of 

trials (fig. 2). Computer experiments allowed also concluding that hypothesis of Normality of 

collected samples must be rejected in 100% cases with 5% significance level for sufficient big 

sample sizes and for various values of population density.  
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