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Abstract  

In current publication a preliminary statistical method of population dynamics 

analysis is considered. Method was applied to analysis of well-known time series of 

larch bud moth (Zeiraphera diniana Gn.) fluctuations, and showed that observed 

fluctuations don’t correspond to strong 2-, 3-,…, 9-year cycle, which can be 

generated by one-dimensional discrete models.  
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Introduction 

Search of suitable mathematical model and estimation of model parameters using 

empirical datasets are the main elements of population dynamics analysis (McCallum, 2000; 

Nedorezov, 1986, 2010, 2011a; Nedorezov, Lohr, Sadykova, 2008; Sibly  et al., 2005; Tonnang et 

al., 2009, 2010; Turchin, 2003; Wood, 2001 and many others). Without finding of suitable model 

(or without constructing of new suitable model) it is impossible to prepare strong scientifically-

based forecasts of pest population changing and optimal methods of its management. But up to 

current moment there are no criterions, which can help in finding suitable model before 

comparison of theoretical and empirical results (Isaev et al., 1984, 2001). 

In a result of it preliminary and respective statistical analysis, which can help in creation 

of plausible hypothesis about the character of population fluctuations, can play important, key 

role in choosing of mathematical models. This preliminary analysis must include as standard 

characteristics of population time series (like average level of population size, range of sample 

etc.) as creation of generalized pictures (phase portraits), which describe basic features of 
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population dynamics but hasn’t correlation with any concrete model (Isaev et al., 1984, 2001; 

Nedorezov, 1989, 1999, 2012a). 

It is possible to point out one more variant of preliminary statistical analysis which seems 

to be very important. In particular, without choosing of any mathematical model it is possible to 

check a hypothesis about correspondence of observed fluctuations to cyclic dynamics of any fixed 

size n  ( ...3,2,1n ). Respectively, all deviations from coordinates of n -cycle can be explained by 

the influence of external stochastic factors, by used methods of data collection etc. In other words, 

before choosing of model we can try to determine a dynamical regime which is observed in 

natural conditions. More precisely, we can try to find a dynamical regime with the following 

property: modern statistical methods don’t allow us concluding that considering regime doesn’t 

correspond to observed fluctuations.  

Necessity of such preliminary statistical analysis can also be explained by the following 

assumptions. It is known, that for estimation of model parameters under the use of global fitting 

and empirical time series, researches use initial parts of model trajectories, and don’t use parts of 

trajectories which correspond to stabilized regime of population fluctuations (McCallum, 2000; 

Nedorezov, 2010, 2011a, 2012a; Nedorezov, Sadykova, 2005, 2008, 2010; Tonnang et al., 2009, 

2010, 2012; Turchin, 2003; Wood, 2001 and many others). Approximation of empirical time 

series by initial parts of model trajectories is correct if we analyze fluctuations of invasive species. 

In such situations we cannot talk about asymptotic stabilizations of population fluctuations. But if 

we analyze dynamics of species which exist in local habitat (where datasets were collected) 

during long time period, the use of initial parts of model trajectories for fitting of empirical time 

series needs in additional explanation.  

 

Algorithm 

Let 1x , 2x ,…, Nx  be a time series of considering hypothetical population. Time step is 

equal to one year, thus kx  is a population size (or density) at k th year. First of all, we have to 

solve the following question: what kind of datasets we have now? If, for example, we analyze 

time series presented in book by G.F. Gause (1934), it is obvious, that for every trajectory we can 

point out initial part (it can be exponential phase of population growth), mid part of trajectory 

(where we can observe growth of influence of self-regulative mechanisms on population size), 

and stabilized behavior (fluctuations near any stable level). In such a situation we have a good 
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background for application of initial parts of trajectories for fitting of experimental datasets 

(Nedorezov, 2011b, 2012b). 

But in the case when we analyze insect population dynamics in locations where insects 

live thousands and thousands years, we haven’t background with the same properties. In these 

situations we observe stabilized dynamical regime. Thus, for the estimation of model parameters 

we have to minimize, for example, the sum of squared deviations of real datasets from 

coordinates of asymptotically stable attractors.  

Let’s consider a situation when we have to fit a time series by a trajectory of stabilized 

regime. There are two possible ways for doing it. The first way is following. We have to choose a 

model, to fix initial values of model parameters, and to get asymptotic trajectory. If we have a 

discrete model (model with discrete time), we have to start this model: first 1000 values of 

population size generated by model must be skipped, and the next 1000 values must be saved. 

Taking into account that 1000N  for biggest part of existing time series on fluctuations of 

insect populations, 1000 values (generated by model) will be enough for estimation of value of 

minimizing functional form.  

Starting with first element of saved trajectory we summarize squared deviations between 

theoretical and empirical trajectories. The same procedure must be repeated starting from the 

second value of saved trajectory and so on (up to N1000 ). For the set of calculated sums we 

can obtain minimum one – the last value will be the value of minimizing functional form for 

selected values of model parameters. This procedure must be continued for determination of 

global minimum of minimized functional form.  

The second way to solution of considering problem is following. On the first step of 

process we must determine a dynamical regime which is realized for population (it is hypothesis 

we have to check analyzing datasets). For example, we can start with assumption that observed 

fluctuations of population size correspond to cycle of the length two: ...ababab  Let’s also assume 

that minimizing functional form is equal to sum of deviations squared. In this case functional 

form can be presented in the following form: 

bak
k

k
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where NNN  *** , and *** NN   or 1***  NN . After estimations (2) of coordinates of 2-

cycle we have to check hypothesis that observed regime is 2-cycle: more precisely, we have to 

analyze two sequences ax 1 , ax 3 ,... and bx 2 , bx 4 ,… and to show that arithmetic 

averages are equal to zeros, distribution functions for both sets are symmetric functions, and there 

are no serial correlation in both sequences.  

If all used tests show that there are no reasons for rejecting of the respective Null 

hypotheses, we have to start the second stage of process – we can start the process of selection of 

mathematical model. It is obvious, if observed changing of population size corresponds to 2-cycle 

there are no reasons for consideration of the Skellam model or Kostitzin model as a basic model – 

in both models there are the regimes of asymptotic stabilizations of population size at any levels 

only for all values of model parameters (Skellam, 1951; Kostitzin, 1937; Beverton, Holt, 1957). 

In this situation it is much better to use Moran – Ricker model or discrete logistic model which 

contain a lot of various dynamical regimes (Moran, 1950; Ricker, 1954; Isaev et al., 1984, 2001; 

Bazykin, 1985; Nedorezov L.V. 1986, 1997; Svirezhev, 1987). Let’s assume that we decided to 

choose Moran – Ricker model for the description of population size dynamics: 
ky

kk eAyy 
 1 ,                                                           (3) 

where 0,  constA  , ky  is population size at time moment k . If we observe 2-cycle for 

model (3) it means that following relations must be truthful for coefficients: 
bAbea  , aAaeb  . 

Values of model (3) parameters must be obtained as solutions of this system of non-linear 

algebraic equations. After logarithmic transformation of this system of algebraic equations we get 

new linear system for variables   and Aw ln : 

bwba  lnln , awab  lnln . 

For ab   basic determinant of this linear system doesn’t equal to zero, and, respectively, 

solutions of this system exist and unique:  
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After obtaining of model parameter estimations we have to check a stability of 2-cycle: if it isn’t 

asymptotically stable model cannot give us a sufficient approximation of datasets. For checking 

of stability of 2-cycle we have to calculate eigenvalue of Jacobi matrix for ))(( FF  of model (3) 
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for given parameters, where ))(( FF  is second iteration of function F  in right-hand side of 

equation.  

Let’s consider more difficult situation when we check hypothesis about realization of the 

3-cycle ...abcabc  for considering time series. In this situation coordinates of 3-cycle can be 

determined with formulas like (2): in first sum there are elements of initial sample with numbers 

1, 4, 7…; in second sum there are elements of initial sample with numbers 2, 5, 8…; in third sum 

there are elements with numbers 3, 6, 9…Like in the previous case after the estimation of cycle 

coordinates it is important to check three sequences of deviations with respective numbers. If all 

used statistical criterions didn’t allow rejecting respective Null hypotheses for all sequences, after 

that model parameters can be estimated.  

Let’s also assume that Moran – Ricker model (3) is the best one for fitting. Thus, model 

coefficients must satisfy to the following algebraic equations: 
cAcea  , aAaeb  , bAbec  . 

Consequently, after logarithmic transformation we have three linear equations for two unknown 

variables (non-correct mathematical problem). Estimations of model parameters can be obtained, 

for example, minimizing the following functional form: 
bac AbecAaebAceabaQ   ),( . 

After obtaining of model parameter estimations sequence of deviations between theoretical and 

empirical time series must be tested using statistical criterions. 

This approach to identification of population dynamics regime has the following 

important problem: length of cycle must be much less than sample size. If we assume that for 

obtaining good (confidence) estimations of coordinates of cycle we have to have about ten real 

values, then even for datasets by F. Schwerdtfeger (1944, 1968; there are about 60 values in 4 

time series of forest insect populations) it will be problematic to check cycles of the length 6 or 

more. 

Within the limits of this approach every time we have to give answers on sequence of 

questions: can we say that observed changing of population size in time is pure stochastic 

fluctuation near stationary level? Can we conclude that observed fluctuations are two-years, 

three-years and so on cyclic processes?   

Let’s assume that we have a hypothesis that considering changing of population size in 

time is cycle of the length 2, ...ababab . Following the steps of algorithm we estimate coordinates 
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of this cycle (formulas (1) and (2)) and obtain two sequences of deviations between empirical 

values and estimated coordinates of cycle. First of all, we have to be sure those estimations of 

cycle coordinates are confidently different. It can be checked with the help of Student test (but 

before using this test we have to check the Normality of the sets of these deviations). For cycles 

of bigger lengths we can use analysis of variance. If there is not a confident difference between 

averages (2) (for selected significance level) we haven’t a background for conclusion about 

existence of 2-cyclic fluctuations. If we have confident differences between averages, we have a 

background for continuation of analysis of considering situation. The second, we have to check 

the hypothesis about the relation between sample variations: for smaller coordinate of cycle we 

have to have smaller (or equal) sample variation. But this last requirement cannot be strong, and 

cannot be realized for sufficient big values of population size (Nedorezov, 2012 a, c). The third, 

after two successive steps we have to check hypotheses about absence/existence of serial 

correlation (Draper, Smith, 1986, 1987). 

 

Datasets  

Regular observations of larch bud moth fluctuations had been started in Swiss Alps (in 

Upper Engadine Valley) in 1949 (Auer, 1977; Baltensweiler, Fischlin, 1988). Used in current 

publication time series can be free downloaded in Internet (NERC Centre for Population Biology, 

Imperial College (1999) The Global Population Dynamics Database, N 1407). Population 

densities are presented in units “number of larvae per kilogram of branches”. 

In GPDD it is pointed out that data were collected in Upper Engadine Valley on 1800 m 

above the sea level (optimal zone for species; Isaev et al., 1984, 2001). Total sample size is 38 

values (from 1949 to 1986). 

 

Results  

In table there are the estimations of cycle’s coordinates (under the assumptions that one or 

other attractor is realized for larch bud moth fluctuations), and respective values of minimizing 

functional form Q  (it is a sum of squared deviations of real values from the estimated 

coordinates of cycle). 

A big decreasing of value of minimizing functional form is observed for the case when it 

is assumed the fluctuations of moth corresponds to 9-cycle. If we assume that length of cycle is 

less than 9, there are no strong changing of the value of minimizing functional form Q  (table). 
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Table  
Estimations of coordinates of cycles and respective values of sums of squared deviations 

between theoretical and empirical trajectories 
 1* 2 3 4 5 6 7 8 9 

1 92.66 82.06 104.63 79.24 151.06 86.15 83.17 141.81 0.032 

2  103.25 45.47 119.71 27.83 56.57 69.03 130.04 0.21 

3   130.81 85.2 44.32 126.83 51.1 21.36 0.41 

4    84.96 100.72 126.19 83.23 2.93 2.51 

5     147.18 32.52 136.11 16.66 36.25 

6      134.78 171.82 109.37 387.5 

7       69.06 165.01 337.5 

8        187.5 111.25 

9         4.51 

Q 899181 894916 850904 889028 798326 843668 840931 727251 114293 
*1-cycle is stationary level 

 

In table there are the estimations of cycle’s coordinates (under the assumptions that one or 

other attractor is realized for larch bud moth fluctuations), and respective values of minimizing 

functional form Q  (it is a sum of squared deviations of real values from the estimated coordinates 

of cycle).  

A big decreasing of value of minimizing functional form is observed for the case when it 

is assumed the fluctuations of moth corresponds to 9-cycle. If we assume that length of cycle is 

less than 9, there are no strong changing of the value of minimizing functional form Q  (table). 

It is obvious, that increasing of the length of cycle must lead to decreasing of the value of 

minimizing functional form Q  (as we can see from the table, process of decreasing can be non-

monotonic). If length of cycle is equal to 38 (in considering situation it is equal to sample size), 

0Q . Thus, strong decreasing of minimizing functional form Q  while crossing from 8-cycle to 

9-cycle doesn’t give us conclusion that 9-cycle gives us the best approximation, and this cycle is 

really observed for larch bud moth. This changing can be a “natural” decreasing of functional 

form Q .  

If we assume that considering time series is stochastic fluctuations near one stable level, 

we have to check Normality of deviations and existing/absence of serial correlation. Kolmogorov 



Population Dynamics: Analysis, Modelling, Forecast 2(1): 38–49 
 

 45 

– Smirnov test gives 35991.0d , and probability 01.0p  (this is the probability of event that 

distribution of deviations is Normal); Lilliefors test shows 01.0p ; Shapiro – Wilk test: 

6436.0W  and 510p  (Lilliefors, 1967; Shapiro, Wilk, Chen, 1968; Bolshev, Smirnov, 1983). 

Durbin – Watson criteria (Draper, Smith, 1986, 1987) is equal to 1.0804, and it means that in 

sequence of residuals the negative serial correlation is observed (for sample size 38 and one 

predictor critical values of this criterion for 5% significance level are following: 43.1Ld  and 

54.1Ud ; and 23.1Ld  and 33.1Ud  for 1% significance level). Thus, with 1% significance 

level our hypothesis that considering sample is stochastic fluctuations near stationary level must 

be rejected. 

If we assume that observed fluctuations correspond to 2-cycle ...abab , we have to divide 

initial sample on two sub-samples 1x , 3x ,… and 2x , 4x ,…, and check the hypothesis :0H  ba   

against alternative hypothesis :1H  ba  . If with rather big significance level 0H  cannot be 

rejected we have not a background for conclusion that 2-cycle is realized for population. For 

considering situation (for first sub-sample) the following results were obtained: Kolmogorov – 

Smirnov test – 37399.0d , 01.0p ; Lilliefors test – 01.0p ; Shapiro – Wilk test – 

63368.0W , 510p . For the second sub-sample obtained results are following: Kolmogorov 

– Smirnov test – 37171.0d , 01.0p ; Lilliefors test – 01.0p ; Shapiro – Wilk test – 

65546.0W , 5102 p . Thus, with 1% significance level hypotheses about Normality of two 

sub-samples must be rejected, and we haven’t a background for application of parametric 

statistical criterions for checking of the hypothesis 0H .  

Taking into account that shift of the sample on any constant doesn’t lead to changing of 

amounts of the tests on Normality, rejecting of the hypothesis about Normality of the sample 1x , 

3x ,… means that we have to reject the hypothesis about Normality of the sample ax 1 , 

ax 3 ,…. Thus, we obtain a background for conclusion that our hypothesis about the 

correspondence of observed fluctuations to 2-cycle is untenable. It is important to note that for 

every considering situation (from 3-cycle up to 9-cycle) we had sub-samples with non-Normal 

distribution: more precisely, hypothesis about Normality could be rejected with 1% significance 

level. Analysis of correspondence of considering fluctuations to 9-cycle showed that for one of 

nine sub-samples hypothesis about Normality can be rejected with 1% significance level; for 
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biggest part of sub-samples this hypothesis cannot be rejected even with 20% significance level. 

Analysis of correspondence of considering fluctuations to 8-cycle showed that for two sub-

samples hypothesis about Normality cannot be rejected even with 20% significance level, and for 

two sub-samples hypothesis about Normality can be rejected with 1% significance level.  

Obtained results show that we haven’t a background for conclusion that observed 

fluctuations of larch bud moth correspond to strong 2-cycle, 3-cycle,…, 9-cycle, which can be 

generated by one-dimensional models of (3) type. This observed cycle has more complicated 

nature. But taking into account that statistics isn’t the probative science (at every time we have a 

probability that presented result is mistaken) we have to check other properties of sets of 

deviations. 

For 9-cycle Kruskal – Wallis test is following: 83104.31H , 0001.0p . Consequently, 

we have confident difference between cycle coordinates (with high significance level we have to 

reject hypothesis that respective sub-samples have one and the same distribution functions). For 

all other cases (for cycles of the lengths 3, 4,…, 8) Kruskal – Wallis test has rather small values 

with 3.0p . Respectively, we have no reasons for the rejecting hypothesis that sub-samples 

have the same distribution functions.  

Thus, there are no reasons for conclusion that the length of observed cycle is less than 9. 

For analysis of correspondence of observed fluctuations to 9-cycle we have to show that we have 

confident difference between all 9 sub-samples. For pairwise comparison Kolmogorov – Smirnov 

test, Wilcoxon – Mann – Whitney test, and Wald – Wolfovitz test were used. The total number of 

considered cases is equal to 36. In 20 cases all three tests showed that for 5% significance level 

sub-samples are different. In 10 cases all three tests showed that there are no reasons for rejecting 

of the respective Null hypotheses. In 6 cases Wilcoxon – Mann – Whitney test showed that sub-

samples are different (hypotheses about equivalence of distribution functions must be rejected), at 

the same time two other tests showed that Null hypotheses cannot be rejected.  

Finally, it give us additional reasons for conclusion that larch bud moth fluctuations don’t 

correspond to 9-cycle. Absence of confident differences between coordinates of 9-cycle can be 

explained by small sub-sample sizes (in every sub-sample we have 4 or 5 values only). It also can 

be also explained by more complicated nature of observed cycle. It is possible to point out some 

other reasons but, anyway, in all situations we have reasons to say that observed cycle is close to 

9-year cycle, and we haven’t reasons for saying this cycle is close to 8-year cycle. 
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Discussion 

Difference in results which were obtained using various types of approximation of real 

datasets – fitting by initial parts of model trajectories and fitting by the systems of coordinates of 

asymptotically stable attractors – demonstrates the level of influence of stochastic factors on 

population dynamics. Comparison of results of approximation of larch bud moth fluctuation 

obtained by two these different ways (Nedorezov, 2011a, 2012 a) show that stochastic factors 

have strong influence on population dynamics. This conclusion cannot be the final one, because 

in most cases used for fitting models didn’t give us a sufficient approximations of time series. 

After all provided calculations we can conclude that observed fluctuations are close to 9-

year cycle. Obtained results show also that we haven’t a background for conclusion that observed 

fluctuations of larch bud moth correspond to strong 2-cycle, 3-cycle,…, 9-cycle, which can be 

generated by one-dimensional models of (3) type. This observed cycle has more complicated 

nature. Respectively, for approximation of considered datasets we have to use more complicated 

models. 
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